909 resultados para Ferromagnetic phasis
Resumo:
We have investigated the structure, magnetization and magnetoresistance (MR) of the double perovskite compounds Sr2Fe1−xGaxMoO6 (0≤x≤0.25). Rietveld refinement results show that the anti-site defects (ASDs) concentration increases with x, giving rise to highly disordered samples at the B/B positions, for the highest doping levels. The evolution of bond lengths and ions oxidation states could be understood by the distribution of trivalent Ga ions at the B/B positions, which leads to the formation of more disorder structure. The saturation magnetization and Curie temperature decreased with the Ga content increases in the samples, and their origin was found that the cations disorder for the Ga-doped compounds is annihilating double exchange mechanism due to the presence of significant amounts of Fe and Ga cations on the B site. The low-field magnetoresistance of Sr2FeMoO6 (SFMO) can be greatly enhanced by replacing the Fe by the nonmagnetic Ga ion up to a temperature of 300 K,since Ga ions may act as a barrier for electron transport along the chain in the ferromagnetic segregation and weaken the ferromagnetic exchange.
Resumo:
Conducting polyamline with electrical conductivity of 2.34 x 10(-1) S cm(-1) was obtained using ferrocenesulfonic acid as dopant. After the ferrocenesulfonic acid was oxidized with FeCl3, though the electrical conductivity of the doped polyaniline decreased by 1-2 orders of magnitude, the magnetic susceptibility (chi) increased with the increase of the oxidation degree of ferrocenesulfonic acid. EPR spectra showed not only a signal with a g value of around 2, but also a so-called half-field signal with a g value of about 4 even at room temperature. Coexistence of ferromagnetic intrachain interactions and antiferromagnetic interchain interactions in the materials has been suggested.
Resumo:
Ferrocenesulfonic acid (FSA) was oxidized by iodine (I-2) and then used as dopant for polyaniline emeraldine base. The resulted polyaniline showed an electrical conductivity of 4.50 x 10(-2) S/cm and a ferromagnetic interaction with a positive Weiss constant of 15 K, the magnetic behavior is attributed to the ferromagnetic coupling between ferrocenium cations in the counter-ions along the polyaniline chain.
Resumo:
(Ni0.65Zn035Cu0.1Fe1.904)-Cu-./SiO2 natiocomposites were fabricated by the sol-gel method using tetraethylorthosilicate as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. With infrared spectra, X-ray diffraction, transmission electron microscope, Raman spectra, Mossbauer spectroscopy and vibrating sample magnetometer measurements, the formation of single phase nanocrystalline NiZnCu ferrites dispersed in silica matrix is confirmed when the sample is annealed at 550degreesC. The transition from the paramagnetic to the ferromagnetic state is observed as the annealing temperature increases from 750degreesC to 1150degreesC. The magnetic properties of these nanocomposites are clearly size dependent. The saturation magnetization increases with the annealing temperature.
Resumo:
MnZn-ferrite/SiO2 nanocomposites with different silica content were successfully fabricated by a novel modified sol-gel auto-combustion method using citric acid as a chelating agent and tetraethyl orthosilicate (TEOS) as the source of silica matrix. The auto-combustion nature of the dried gel was studied by X-ray diffraction (XRD), Infrared spectra (IR), thermogravimetry (TG) and differential thermal analysis (DTA). Transmission electron microscope (TEM) observation shows that the MnZn-ferrite particles are homogeneously dispersed in silica matrix after auto-combustion of the dried gels. The magnetic properties vary with the silica content. The transition from the ferromagnetic to paramagnetic state is observed by Mossbauer spectra measurement with the increasing silica content. Vibrating sample magnetometer (VSM) shows that the magnetic properties of Mn0.65Zn0.35Fe2O4/SiO2 nanocomposites strongly depend on the silica content.
Resumo:
Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites with different weight percentages of NiZnCu-ferrite dispersed in silica matrix were successfully fabricated by the sol-gel method using tetraethylorthosilicate (TEOS) as a precursor of silica, and metal nitrates as precursors of NiZnCu ferrite. The thermal decomposition process of the dried gel was studied by thermogravimetric analysis (TGA) and differential thermal analysis (DTA). The obtained Ni0.65Zn0.35Cu0.1Fe1.9O4/SiO2 nanocomposites were characterized by X-ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), Mossbauer spectroscopy and vibrating sample magnetometry (VSM). The formation of stoichiometric NiZnCu-ferrite dispersed in silica matrix is confirmed when the weight percentage of ferrite is not more than 30%. Samples with higher ferrite content have small amount of alpha-Fe2O3. The transition from the paramagnetic to the ferromagnetic state is observed as the ferrite content increases from 20 to 90wt%.
Resumo:
Polycrystalline Sr2FeMoO6 compounds with most vacancies at normal Fe sites were fabricated through Mo hole doping; its effect is similar to Fe3+ by our estimation. Sharp increase of magnetoconductance at low field was evidence of spin-polarized tunneling between the grains. The room temperature low-field magnetoresistivity at optimal doping x=0.03 is 8.5% in 3000 Oe and increases to 11.4% in 1 T associated with soft magnetic behaviors; furthermore it exhibits a ferromagnetic Curie temperature of 450 K, connected with hole doping effect. The improved magnetoresistivity behavior was related to Curie temperature.
Resumo:
The electronic structure of CaCu3Mn4O12 and LaCu3Mn4O12 was investigated using a full-potential linearized augmented plane wave method within the Generalized Gradient Approximation (GGA). The ferrimagnetic and ferromagnetic states in these two compounds were investigated and the calculated spin magnetic moments were found to be close to the available experimental values. Calculations of spin polarization for these two oxides show that the ferrimagnetic configurations are the energetically favored ground state, which is consistent with experimental observation. The calculations predict that CaCu3Mn4O12 is a semiconductor and that LaCu3Mn4O12 is a half-metallic material. Furthermore, the relevance of these different electronic structures to the magnetoresistance is discussed.
Resumo:
The electrical, magnetic and transport properties of Zn doped polycrystalline samples of Sr2Fe1-xZnxMoO6 ( x = 0, 0.05, 0.15 and 0.25) with the double perovskite structure have been investigated. The subtle replacement of Fe3+ ions by Zn2+ ions facilitates the formation of a more ordered structure, while further substitution leads to disordered structure because of the presence of a striped phase. Analysis of the x-ray powder diffraction patterns based on Rietveld analysis indicates that the replacement of Fe3+ by Zn2+ ions favours the formation of Mo6+ ions. The spin-glass behaviour can be explained on the basis of the competition between the antiferromagnetic superexchange and the ferromagnetic double-exchange interaction. The low-field magnetoresistance was moderately enhanced at x = 0.05, and its origin was found to be the competition between the decrease of the concentration of the itinerant electrons and the weaker antiferromagnetic superexchange in the antiphase boundaries. An almost linear negative magnetoresistance in moderate field has been observed for x = 0.25. A possible double-exchange mechanism is proposed for elucidating the observations; it also suggests a coexistence of (Fe3+, Mo5+) and (Zn2+, Mo6+) valence pairs.
Resumo:
A novel sandwich-type compound, Na-12[Fe-4(H2O)(2)(As2W15O56)2].41H(2)O, has been synthesized. The compound was well-characterized by means of IR, UV-vis, W-183 NMR and elemental analyses. The compound crystallizes in the triclinic, P (1) over bar symmetry group. The structure of the compound is similar to that of Na-16[M-4(H2O)(2)(As2W15O56)(2)].nH(2)O (M = Cu, Zn, Co, Ni, Mn, Cd), and consists of an oxo-aqua tetranuclear iron core, [(Fe4O14)-O-III(H2O)(2)], sandwiched by two trivacant alpha-Wells-Dawson structural moieties, alpha-[As2W15O56]. Redoxelectrochemistry of the compound has been studied in buffer solutions at pH = 4.7 using polarography and cyclic voltammetry ( CV). The compound exhibited four one-electron couples associated with the Fe(III) center followed by three four-electron redox processes attributed to the tungsten-oxo framework. The compound-containing monolayer and multilayer films have been fabricated on a 4-aminobenzoic acid modified glassy carbon electrode surface by alternating deposition with a quaternized poly(4-vinylpyridine) partially complexed with [Os(bpy)(2)Cl](2+/-). CV, X-ray photoelectron spectroscopy (XPS), UV-vis spectroscopy and atomic force microscopy (AFM) have been used to characterize the multilayer films.
Resumo:
The rational synthesis and the structural and magnetic characterization of a nickel cluster are presented. The compound comprises a rhomblike Ni4O16 group encapsulated between two-heptadentate tungstoarsenate ligands [AsW9O34](9-). The crystal structure of K-10[Ni-4(H2O)(2)(AsW9O34)(2)](.)4H(2)O was solved in monoclinic, P2(1)/n symmetry, with a = 12.258(3) Angstrom, b = 21.232(4) Angstrom, c = 15.837(3) Angstrom, beta = 92.05(3)degrees, V = 4119.1(14) Angstrom(3), Z = 2, and R = 0.0862. The crystal structure of the Ni(II) derivative was compared with that of the Cu(II), Zn(II), Co(II) and Mn(II) derivatives. The Ni4O14(H2O)(2) unit in the compound shows no Jahn-Teller distortion. On the other hand, the Ni(II) derivative shows ferromagnetic exchange interactions within the Ni4O16 group (J = 7.8 cm(-1), J' = 13.7 cm(-1)) and an S = 4 ground state, the highest spin state reported in a heteropoly complex. Its redox electrochemistry has been studied in acid buffer solutions using cyclic voltammetry. It exhibited two steps of one-electron redox waves attributed to redox processes of the tungsten-oxo framework. The new catalyst showed an electrocatalytic effect on the reduction of NO2-.
Resumo:
The singlet-triplet splitting energy gap DeltaE(S.T) = E-S - E-T is calculated for the ortho-, meta-, and para-xylylenes and their heteroatomic analogous by means of AM1-CI approach. It is shown that when the radical centers R-.(R-.=H2C.-,H2N.+- or HN.-) are twisted sufficiently Tar out of conjugation with the benzene ring, DeltaE(S.T) tends to zero or is negative, i.e, ortho-, meta-, and para-phenylenes turn into weak ferromagnetic or antiferromagnetic coupling unit, while they are strong ferromagnetic (meta-isomers) or antiferromagnetic (ortho-, para-isomers) coupling units under planar conformation. It is suggested that serious twisted conformation is not recommended candidate for the design of novel high-spin molecules with stable high-spin ground states by ortho- or para-phenylene coupling unit.
Resumo:
Pyrolysis of hyperbranched poly[1,1'-ferrocenylene(methyl)silyne] (5) yields mesoporous, conductive, and magnetic ceramics (6). Sintering at high temperatures (1000-1200 degrees C) under nitrogen and argon converts 5 to 6N and 6A, respectively, in similar to 48-62% yields. The ceramization yields of 5 are higher than that (similar to 36%) of its linear counterpart poly[1,1'-ferrocenylene(dimethyl)silylene] (1), revealing that the hyperbranched polymer is superior to the linear one as a ceramic precursor. The ceramic products 6 are characterized by SEM, XPS, EDX, XRD, and SQUID. It is found that the ceramics are electrically conductive and possess a mesoporous architecture constructed of tortuously interconnected nanoclusters. The iron contents of 6 estimated by EDX are 36-43%, much higher than that (11%) of the ceramic 2 prepared from the linear precursor 1. The nanocrystals in 6N are mainly alpha-Fe2O3 whereas those in 6A are mainly Fe3Si. When magnetized by an external field at room temperature, 6A exhibits a high-saturation magnetization (M-s similar to 49 emu/g) and near-zero remanence and coercivity; that is, 6A is an excellent soft ferromagnetic material with an extremely low hysteresis loss.
Resumo:
The series of biradicals with m-phenylene coupling unit and hetero-spin centers were calculated compared with those possessing home-spin centers using AM1-CI method. A simple rule was proposed to design high spin molecules with ferromagnetic coupling unit and hetero-spin centers. Two neutral (or charged) hetero-spin centers resulted in high spin ground state, one neutral and another charged hetero-spin centers correspond to low spin ground state. The latter was ascribed to the huge splitting of two partially occupied molecular orbitals.
Resumo:
Intermolecular ferromagnetic interactions in two stacking models for the dimer of high spin molecules are investigated by means of AM1-CI approach. It is shown that the stability of high spin ground state versus low spin state can be simply traced back to the number and the extent of atoms with reversed signs of pi-spin density in neighboring molecules coupled to each other in shortest distance.