902 resultados para Fat and protein deposition
Resumo:
More than 30% of the patients on peritoneal dialysis show chronic systemic inflammatory activity with high levels of C-reactive protein. The purpose of this cross-sectional study was to investigate the influence of the inflammatory state on clinical and nutritional markers in patients on peritoneal dialysis. Twenty-seven patients were included: mean age was 57.6 +/- 19 years, 48% were male, and median time on peritoneal dialysis was 16.0 (8.3; 35.8) months. Clinical, dialytic, laboratory, anthropometric and electric bioimpedance data were collected with the sample stratified for C-reactive protein. In patients, the levels of Interleukin-6 and tumor necrosis factor-a were higher, while adiponectin levels were lower than in healthy individuals (p <= 0.001), indicating the presence of inflammatory activity in the sample. When compared to patients with C-reactive protein < 1 mg/dL, those with = 1mg/dL showed higher body mass index (29.4 +/- 6.1 vs. 24.4 +/- 4.5 kg/m(2); p = 0.009), percent of standard body weight (124.5 +/- 25.4 vs. 106.8 +/- 17.9 %; p = 0.012), and percent of body fat as assessed by both anthropometry (31.3 +/- 9.9 vs. 23.9 +/- 9.1%; p = 0.056) and bioimpedance (38.9 +/- 6.3 vs. 26.2 +/- 12.6 %; p < 0.001). Patients with C-reactive protein = 1mg/dL also exhibited higher levels of ferritin (701 +/- 568 vs. 532 +/- 356 ng/mL; p = 0.054) and lower total lymphocyte count (median 1838 vs. 1638 mm(3); p = 0.001). In conclusion, higher body mass index and body fat markers were associated with C-reactive protein = 1mg/dL, and higher C-reactive protein was associated with immunocompetence impairment evidenced by the lower total lymphocyte count. Our findings confirm the relationship between inflammation, body fat, and immunocompetence, which may be superimposed potentializing the inflammatory status.
Resumo:
The objective of this research was to evaluate the effects of 2 levels of raw milk somatic cell count (SCC) on the composition of Prato cheese and on the microbiological and sensory changes of Prato cheese throughout ripening. Two groups of dairy cows were selected to obtain low-SCC (<200,000 cells/mL) and high-SCC (>700,000 cells/mL) milks, which were used to manufacture 2 vats of cheese. The pasteurized milk was evaluated according to the pH, total solids, fat, total protein, lactose, standard plate count, coliforms at 45 degrees C, and Salmonella spp. The cheese composition was evaluated 2 d after manufacture. Lactic acid bacteria, psychrotrophic bacteria, and yeast and mold counts were carried out after 3, 9, 16, 32, and 51 d of storage. Salmonella spp., Listeria monocytogenes, and coagulase-positive Staphylococcus counts were carried out after 3, 32, and 51 d of storage. A 2 x 5 factorial design with 4 replications was performed. Sensory evaluation of the cheeses from low- and high-SCC milks was carried out for overall acceptance by using a 9-point hedonic scale after 8, 22, 35, 50, and 63 d of storage. The somatic cell levels used did not affect the total protein and salt: moisture contents of the cheeses. The pH and moisture content were higher and the clotting time was longer for cheeses from high-SCC milk. Both cheeses presented the absence of Salmonella spp. and L. monocytogenes, and the coagulase-positive Staphylococcus count was below 1 x 10(2) cfu/g throughout the storage time. The lactic acid bacteria count decreased significantly during the storage time for the cheeses from both low- and high-SCC milks, but at a faster rate for the cheese from high-SCC milk. Cheeses from high-SCC milk presented lower psychrotrophic bacteria counts and higher yeast and mold counts than cheeses from low- SCC milk. Cheeses from low- SCC milk showed better overall acceptance by the consumers. The lower overall acceptance of the cheeses from high-SCC milk may be associated with texture and flavor defects, probably caused by the higher proteolysis of these cheeses.
Resumo:
Gap junction channels, formed by connexins (Cx), are involved in the maintenance of tissue homeostasis, cell growth, differentiation, and development. Several studies have shown that Cx43 is involved in the control of wound healing in dermal tissue. However, it remains unknown whether Cx43 plays a role in the control of liver fibrogenesis. Our study investigated the roles of Cx43 heterologous deletion on carbon tetrachloride (CCl(4))-induced hepatic fibrosis in mice. We administered CCl(4) to both Cx43-deficient (Cx43(+/-)) and wild-type mice and examined hepatocellular injury and collagen deposition by histological and ultrastructural analyses. Serum biochemical analysis was performed to quantify liver injury. Hepatocyte proliferation was analyzed immunohistochemically. Protein and messenger RNA (mRNA) expression of liver connexins were evaluated using immunohistochemistry as well as immunoblotting analysis and quantitative real-time PCR. We demonstrated that Cx43(+/-) mice developed excessive liver fibrosis compared with wild-type mice after CCl(4)-induced chronic hepatic injury, with thick and irregular collagen fibers. Histopathological evaluation showed that Cx43(+/-) mice present less necroinflammatory lesions in liver parenchyma and consequent reduction of serum aminotransferase activity. Hepatocyte cell proliferation was reduced in Cx43(+/-) mice. There was no difference in Cx32 and Cx26 protein or mRNA expression in fibrotic mice. Protein expression of Cx43 increased in CCl(4)-treated mice, although with aberrant protein location on cytoplasm of perisinusoidal cells. Our results demonstrate that Cx43 plays an important role in the control and regulation of hepatic fibrogenesis. Microsc. Res. Tech. 74:421-429, 2011. (C) 2010 Wiley-Liss, Inc.
Resumo:
Background: The long-term relations between specific types of dietary fat and risk of type 2 diabetes remain unclear. Objective: Our objective was to examine the relations between dietary fat intakes and the risk of type 2 diabetes. Design: We prospectively followed 84204 women aged 34–59 y with no diabetes, cardiovascular disease, or cancer in 1980. Detailed dietary information was assessed at baseline and updated in 1984, 1986, and 1990 by using validated questionnaires. Relative risks of type 2 diabetes were obtained from pooled logistic models adjusted for nondietary and dietary covariates. Results: During 14 y of follow-up, 2507 incident cases of type 2 diabetes were documented. Total fat intake, compared with equivalent energy intake from carbohydrates, was not associated with risk of type 2 diabetes; for a 5% increase in total energy from fat, the relative risk (RR) was 0.98 (95% CI: 0.94, 1.02). Intakes of saturated or monounsaturated fatty acids were also not significantly associated with the risk of diabetes. However, for a 5% increase in energy from polyunsaturated fat, the RR was 0.63 (0.53, 0.76; P < 0.0001) and for a 2% increase in energy from trans fatty acids the RR was 1.39 (1.15, 1.67; P = 0.0006). We estimated that replacing 2% of energy from trans fatty acids isoenergetically with polyunsaturated fat would lead to a 40% lower risk (RR: 0.60; 95% CI: 0.48, 0.75). Conclusions: These data suggest that total fat and saturated and monounsaturated fatty acid intakes are not associated with risk of type 2 diabetes in women, but that trans fatty acids increase and polyunsaturated fatty acids reduce risk. Substituting nonhydrogenated polyunsaturated fatty acids for trans fatty acids would likely reduce the risk of type 2 diabetes substantially.
Resumo:
Background Body mass index (BMI) is frequently related to percentage body fat. Nevertheless, the relationship between BMI and fat mass/height(2) (FM/H-2), theoretically, should be more appropriate. Aim: This study seeks to evaluate the relationship between BMI and both percentage body fat and FM/H-2 in a group of Chinese Australian females. Subjects and methods: Forty subjects took part in the study and all were Chinese females resident in Brisbane, Australia. Body mass index was calculated from height and weight. Percentage body fat and fat mass were calculated from measurements of total body water. Results: The use of BMI to predict FM/H-2 accounted for double the variance of that found when BMI was used to predict percentage body fat. Conclusions: As a consequence, it is possible that the use of BMI to predict FM/H-2 and not percentage body fat in the first instance may prove to be more useful in a number of adult populations. Nevertheless, with a relatively small sample size it is difficult, if not impossible, to test the developed equations on a validation group and further investigation into the findings described in this paper needs to be undertaken.
Resumo:
Forty-five Large White gilts were used to study the effect of energy intake from 28 to 176 d of age on body composition and reproductive development. From 28 to 60 d, the gilts were fed ad libitum a 16.6 MJ DE/kg, 24% crude protein and 1.3% total lysine diet. From 61 d of age three dietary treatments were used; 1) ad libitum access to feed (15.6 MJ DE/kg, 21% crude protein and 1.07% total lysine) (H), 2) feed offered at 75% (M) of the previous days intake of H, and 3) feed offered at 60% (L) of the previous days intake of H. ADG from 61 to 176 d of age was (p <0.05) affected by treatment. Although live weight at 176 d of age did not differ (p >0.1) the H gilts had higher (p <0.08) carcass weights than the M or L gilts. Back fat depths were similar (p >0.1) for all treatments at 115 d of age, however by 176 d of age M and H gilts were fatter (p <0.1) than L gilts. The mean lipid deposition (LD) from 115 to 176 d of age for L gilts (78.9 g/d) was less (p <0.05) than for M gilts (143.6 g/d) and H gilts (135.6 g/d). There were no differences between treatments for protein deposition (PD) over the same period. More (p <0.05) H gilts (n=8) attained puberty (first observed estrus) than either M gilts or L gilts (n=4 for both). Follicle numbers were similar (p >0.1) across treatments. For gilts that attained puberty, H gilts had fewer (p <0.05) follicles (13.5) than M gilts (19.7) and L gilts (21.3). For gilts with follicular development, H gilts had the heaviest (458.7 g) reproductive tract weight (RTW). However, for those that attained puberty, L gilts had the heaviest RTW. RTW were lowest for those with no follicular development. Energy restriction had a negative impact on puberty attainment, i.e. it took longer to reach puberty. However, for gilts that attained puberty, the number of follicles was greater for those on lower feed intakes. It would appear that rate of fat deposition, but not necessarily the total amount of fat, plays an important role in puberty attainment.
Resumo:
Fatty acids inhibit insulin-mediated glucose metabolism in skeletal muscle, an effect largely attributed to defects in insulin-mediated glucose transport. Insulin-resistant mice transgenic for the overexpression of lipoprotein lipase (LPL) in skeletal muscle were used to examine the molecular mechanism(s) in more detail. Using DNA gene chip array technology, and confirmation by RT-PCR and Western analysis, increases in the yeast Sec1p homolog Munc18c mRNA and protein were found in the gastrocnemius muscle of transgenic mice, but not other tissues. Munc18c has been previously demonstrated to impair insulin-mediated glucose transport in mammalian cells in vitro. Of interest, stably transfected C2C12 cells overexpressing LPL not only demonstrated increases in Munc18c mRNA and protein but also in transcription rates of the Munc18c gene. jlr To confirm the relevance of fatty acid metabolism and insulin resistance to the expression of Munc18c in vivo, a 2-fold increase in Munc18c protein was demonstrated in mice fed a high-fat diet for 4 weeks. Together, these data are the first to implicate in vivo increases in Munc18c as a potential contributing mechanism to fatty acid-induced insulin resistance.
Resumo:
Insulin stimulates glucose transport in fat and muscle cells by triggering exocytosis of the glucose transporter GLUT4. To define the intracellular trafficking of GLUT4, we have studied the internalization of an epitope-tagged version of GLUT4 from the cell surface. GLUT4 rapidly traversed the endosomal system en route to a perinuclear location. This perinuclear GLUT4 compartment did not colocalize with endosomal markers (endosomal antigen I protein, transferrin) or TGN38, but showed significant overlap with the TGN target (t)-soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) Syntaxins 6 and 16. These results were confirmed by vesicle immunoisolation. Consistent with a role for Syntaxins 6 and 16 in GLUT4 trafficking we found that their expression was up-regulated significantly during adipocyte differentiation and insulin stimulated their movement to the cell surface. GLUT4 trafficking between endosomes and trans-Golgi network was regulated via an acidic targeting motif in the carboxy terminus of GLUT4, because a mutant lacking this motif was retained in endosomes. We conclude that GLUT4 is rapidly transported from the cell surface to a subdomain of the trans-Golgi network that is enriched in the t-SNAREs Syntaxins 6 and 16 and that an acidic targeting motif in the C-terminal tail of GLUT4 plays an important role in this process.
Resumo:
As with any variety of rice, red rice characteristics are subject to varietal differences, growing conditions, types of processing, and nutritional and rheological properties. This study determined the nutritional characteristics (centesimal composition and minerals) and paste viscosity properties of raw grains of four red rice genotypes (Tradicional MNAPB0405, MNACE0501 and MNACH0501) and the paste viscosity properties of pre-gelatinized flours obtained at different cooking times (20, 30 and 40 min). The main nutritional properties were correlated with the pasting properties of the pre-gelatinized flours. The samples showed differences in nutritional properties and paste viscosity. MNAPB0405 and MNACE0501 showed higher levels of fiber and fat and provided higher caloric energy than Tradicional and MNACH0501, which, in turn, showed higher levels of amylose. MNACH0501 showed higher peak viscosity (2402 cP), higher breakdown viscosity (696 cP) and a greater tendency to retrogradation (1510 cP), while Tradicional, MNAPB0405 and MNACE0501 had pasting profiles with peak viscosities varying between 855 and 1093 cP, breaking viscosity below 85 cP and retrogradation tendency between 376 and 1206 cP. The factors genotype and cooking time influenced the rheological behavior of pre-gelatinized flours, decreasing their pasting properties. The protein and amylose levels are correlated with the pasting properties and can be used as indicators of these properties in different genotypes of red rice, whether raw or processed into pre-gelatinized flours.
Resumo:
Objective: This study was conducted to determine the association between magnesium (Mg), body composition and insulin resistance in 136 sedentary postmenopausal women, 50 to 77 years of age. Methods: Diabetics, hypertensives and women on hormonal replacement therapy were excluded and the remaining 74 were divided according to BMI≥25 (obese: OG) and BMI<25 kg/m2 (non-obese: NOG). Nutritional data disclosed that intakes were high for protein and saturated fat, low for carbohydrates, polyunsaturated fat and Mg and normal for the other nutrients, according to recommended dietary allowances (RDA). Mg values in red blood cells (RBC-Mg) and plasma (P-Mg), were determined, as were fasting glucose, and insulin levels, Homeostasis Model Assessment (HOMA), body mass index (BMI), body fat percent (BF %), abdominal fat (AF) and free fat mass (FFM). Results: RBC-Mg values were low in both groups when compared with normal values. There were significant differences in body composition parameters, HOMA and insulin levels, with higher basal insulin levels in OG. RBC-Mg was directly correlated with insulin, HOMA and FFM in both groups, according to Pearson correlations. HOMA in OG was also directly correlated with BMI, FFM and AF. In NOG, HOMA was only correlated with FFM. The low RBC-Mg levels observed were probably due to low Mg intake and to deregulation of factors that control Mg homeostasis during menopause. Conclusions: Both Mg deficit and obesity may independently lead to a higher risk for insulin resistance and cardiovascular disease.
Resumo:
Background/Aims: Unconjugated bilirubin (UCB) impairs crucial aspects of cell function and induces apoptosis in primary cultured neurones. While mechanisms of cytotoxicity begin to unfold, mitochondria appear as potential primary targets. Methods: We used electron paramagnetic resonance spectroscopy analysis of isolated rat mitochondria to test the hypothesis that UCB physically interacts with mitochondria to induce structural membrane perturbation, leading to increased permeability, and subsequent release of apoptotic factors. Results: Our data demonstrate profound changes on mitochondrial membrane properties during incubation with UCB, including modified membrane lipid polarity and fluidity (P , 0:01), as well as disrupted protein mobility(P , 0:001). Consistent with increased permeability, cytochrome c was released from the intermembrane space(P , 0:01), perhaps uncoupling the respiratory chain and further increasing oxidative stress (P , 0:01). Both ursodeoxycholate, a mitochondrial-membrane stabilising agent, and cyclosporine A, an inhibitor of the permeability transition, almost completely abrogated UCB-induced perturbation. Conclusions: UCB directly interacts with mitochondria influencing membrane lipid and protein properties, redox status, and cytochrome c content. Thus, apoptosis induced by UCB may be mediated, at least in part, by physical perturbation of the mitochondrial membrane. These novel findings should ultimately prove useful to our evolving understanding of UCB cytotoxicity.
Resumo:
Dissertation presented to obtain the Doutoramento (Ph.D.) degree in Biochemistry at the Instituto de Tecnologia Qu mica e Biol ogica da Universidade Nova de Lisboa
Resumo:
Germfree (GF) and conventional (CV) mice were fed on diets containing 4.4, 13.2 or 26.4% of protein (weight/weight). CV mice fed on low protein diet did not gain weight during four weeks, whereas the protein deficient diet did not affect the growth of GF mice. After four weeks on these diets, the mice were inoculated with 5x103 trypomastigotes of Trypanosoma cruzi. The protein deficiency affected less the GF than the CV mice, according to the following parameters: weight gain, hemoglobin, plasma protein and albumin levels and water and protein contents of the carcass. Infection with T. cruzi produced a significant decrease in hemoglobin levels, red blood cell count, and water and protein contents in the carcass. This decrease was more pronounced in the GF mice. Histopathologically, there was no difference between the treatments in animals with the same microbiological status (GF or CV). However, the disease was more severe in the GF than in the CV mice.
Resumo:
Objectives: Coronary artery disease are associated with decreased levels of physical activity, contributing to increases in abdominal fat and consequently the metabolic risk. The use of microcurrents is an innovative and effective method to increase lipolytic rate of abdominal adipocytes. This study aims to investigate the effects of microcurrents with a homebased exercise program on total, subcutaneous and visceral abdominal adipose tissue in subjects with coronary artery disease. Methods: This controlled trial included 44 subjects with myocardial infarction, randomly divided into Intervention Group 1 (IG1; n = 16), Intervention Group 2 (IG2; n = 12) and Control Group (CG; n = 16). IG1 performed a specific exercise program at home during 8 weeks, and IG2 additionally used microcurrents on the abdominal region before the exercise program. All groups were subjected to health education sessions. Computed Tomography was used to evaluate abdominal, subcutaneous and visceral fat, accelerometers to measure habitual physical activity and the semiquantitative Food Frequency Questionnaire for dietary intake. Results: After 8 weeks, IG2 showed a significantly decreased in subcutaneous fat (p ≤ 0.05) when compared to CG. Concerning visceral fat, both intervention groups showed a significant decrease in comparison to the CG (p ≤ 0.05). No significant changes were found between groups on dietary intake and habitual physical activity, except for sedentary activity that decreased significantly in IG2 in comparison with CG (p ≤ 0.05). Conclusions: This specific exercise program showed improvements in visceral fat in individuals with coronary artery disease. Microcurrent therapy associated with a home-based exercise program suggested a decreased in subcutaneous abdominal fat.
Resumo:
Primary Systemic Amyloidosis (AL) is the most frequent form of systemic amyloidosis and its morbilility is associated with immunoglobulin light chains deposition in vital organs. The mucocutaneous manifestations occur in about 30-40% of the cases and are important in diagnostic suspicion, once they appear in early stages of disease. We report a 71-years-old female patient, with disseminated purpura and cutaneous fragility with 6 months of evolution, accompanied by recent complaints of dysphagy. The first laboratory evaluation didn't show any alterations. The histological and immunohistochemical study of subcutaneous abdominal fat and skin biopsy showed lambda type amyloid protein. In the systemic work-up, we highlight a proteinúria > 1g/24h with Bence Jones proteins and the presence of monoclonal immunoglobulin light chain (lambda type) in serum immunoelectrophoresis. With the diagnosis of primary systemic amyloidosis, treatment with prednisolone and melphalan was started.