979 resultados para Factorial experiment designs.
Resumo:
Discrete element modeling is being used increasingly to simulate flow in fluidized beds. These models require complex measurement techniques to provide validation for the approximations inherent in the model. This paper introduces the idea of modeling the experiment to ensure that the validation is accurate. Specifically, a 3D, cylindrical gas-fluidized bed was simulated using a discrete element model (DEM) for particle motion coupled with computational fluid dynamics (CFD) to describe the flow of gas. The results for time-averaged, axial velocity during bubbling fluidization were compared with those from magnetic resonance (MR) experiments made on the bed. The DEM-CFD data were postprocessed with various methods to produce time-averaged velocity maps for comparison with the MR results, including a method which closely matched the pulse sequence and data processing procedure used in the MR experiments. The DEM-CFD results processed with the MR-type time-averaging closely matched experimental MR results, validating the DEM-CFD model. Analysis of different averaging procedures confirmed that MR time-averages of dynamic systems correspond to particle-weighted averaging, rather than frame-weighted averaging, and also demonstrated that the use of Gaussian slices in MR imaging of dynamic systems is valid. © 2013 American Chemical Society.
Resumo:
Three questions have been prominent in the study of visual working memory limitations: (a) What is the nature of mnemonic precision (e.g., quantized or continuous)? (b) How many items are remembered? (c) To what extent do spatial binding errors account for working memory failures? Modeling studies have typically focused on comparing possible answers to a single one of these questions, even though the result of such a comparison might depend on the assumed answers to both others. Here, we consider every possible combination of previously proposed answers to the individual questions. Each model is then a point in a 3-factor model space containing a total of 32 models, of which only 6 have been tested previously. We compare all models on data from 10 delayed-estimation experiments from 6 laboratories (for a total of 164 subjects and 131,452 trials). Consistently across experiments, we find that (a) mnemonic precision is not quantized but continuous and not equal but variable across items and trials; (b) the number of remembered items is likely to be variable across trials, with a mean of 6.4 in the best model (median across subjects); (c) spatial binding errors occur but explain only a small fraction of responses (16.5% at set size 8 in the best model). We find strong evidence against all 6 documented models. Our results demonstrate the value of factorial model comparison in working memory.
Resumo:
Despite it is widely acknowledged that the ability to hydrolyze dissolved organic matter using extracellular phosphatases is diverse in fresh water phytoplankton, the competition within single species related to presence and quantity of cell-surface-bound phosphatases has not been examined in natural conditions yet. Here, we studied phytoplankton species competition in a freshwater reservoir during an in situ experiment. A natural plankton community, with the exclusion of large zooplankton, was enclosed in permeable dialysis bags inside two large containers of different bioavailable phosphate concentrations. Phytoplankton species biomass and the abundance of bacteria were determined in purpose to compare the development of enclosed microbial communities. Total and cell-surface-bound phosphatase activities in the phytoplankton were investigated using the Fluorescently Labelled Enzyme Activity (FLEA) technique that allows for direct microscopic detection of phosphatase-positive cells and, with image cytometry, enables quantification of phosphatase hydrolytic capacity. Production of extracellular phosphatases was not completely inhibited or stopped in the phosphate-enriched environment, phytoplankton cells only showed the activity less often. Under the phosphate-nonenriched conditions, the production of phosphatases was enhanced, but active species did not proliferate amongst phytoplankton assemblage. Further, specific growth rates of the phosphatase-positive species in the non-enriched environment were lower than the same phosphatase-positive species in phosphate-enriched environment. Interestingly, the phosphatase-positive cells of Ankyra ancora increased their size in both treatments equally, although the population in phosphate-enriched environment grew much faster and the cell-specific phosphatase activity was lower. We hypothesize that brand new daughter cells had sufficient phosphorus reserves and therefore did not employ extracellular phosphatases until they matured and needed extra bioavailable phosphorus to support their metabolism before cell division. Based on presented in situ experiment, we propose that the ability to hydrolyze organic polymers and particles with cell-surface-hound phosphatases is advantageous for longer persistence of given population in a phosphate-scarce environment; although phosphatase-positive species cannot dominate the reservoir phytoplankton solely because of specific phosphorus-scavenging strategy.
Resumo:
This experiment was designed to investigate the effect of dietary supplemental ascorbic acid (AA) on the feed intake, growth, serum lysozyme, hepatic superoxide dismutase (SOD) and handling stress response in Chinese longsnout catfish (Leiocassis longirostris Gunther) exposed to three levels of unionized ammonia nitrogen (UIA-N). Juvenile Chinese longsnout catfish were reared in 54 fibreglass tanks with a 3 x 3 factorial design treatment consisting of three supplemental AA levels in ascorbyl 2-monophosphate (38, 364 and 630 mg AA equivalent kg(-1) diet) and three UIA-N concentrations [0.004 (the control), 0.037 and 0.292 mg L-1]. The fish were sampled on the 11th, 32nd and 60th day. On the 62nd day, the remaining fish were subjected to an acute stress by being held in a dipnet out of water for 60 s, and sampled at 30 min post handling. The results showed that the specific growth rate (SGR) in 32 days significantly decreased with increased water UIA-N (P=0.0476) but was not affected by dietary supplemental AA (P > 0.05). After 60 days, SGR, feeding rate (FR) and feed conversion efficiency (FCE) significantly increased with increased dietary supplemental AA (P < 0.001) while remaining unaffected by water UIA-N (P > 0.05). There was no significant interaction between dietary AA and UIA-N for growth responses (P > 0.05). The serum lysozyme activity on the 11th day and the hepatic SOD activity on the 32nd day were significantly affected at high (0.292 mg L-1) water UIA-N. On the 62nd day, the increase in cortisol resulting from acute stress significantly decreased by higher UIA-N (P=0.038). It is suggested that Chinese longsnout catfish displayed an adaptive response after long-term UIA-N exposure, and AA had beneficial effects on the growth and feed intake of catfish and alleviated the negative effects of chronic ammonia stress. A chronically higher ammonia level shows a tendency to inhibit the cortisol response to another acute stressor.
Resumo:
This paper experimentally demonstrates that, for two representative indoor distributed antenna system (DAS) scenarios, existing radio-over-fiber (RoF) DAS installations can enhance the capacity advantages of broadband 3 × 3 multiple-input-multiple-output (MIMO) radio services without requiring additional fibers or multiplexing schemes. This is true for both single-and multiple-user cases with a single base station and multiple base stations. First, a theoretical example is used to illustrate that there is a negligible improvement in signal-to-noise ratio (SNR) when using a MIMO DAS with all N spatial streams replicated at N RAUs, compared with a MIMO DAS with only one of the N streams replicated at each RAU for N ≤ 4. It is then experimentally confirmed that a 3 × 3 MIMO DAS offers improved capacity and throughput compared with a 3 × 3 MIMO collocated antenna system (CAS) for the single-user case in two typical indoor DAS scenarios, i.e., one with significant line-of-sight (LOS) propagation and the other with entirely non-line-of-sight (NLOS) propagation. The improvement in capacity is 3.2% and 4.1%, respectively. Then, experimental channel measurements confirm that there is a negligible capacity increase in the 3 × 3 configuration with three spatial streams per antenna unit over the 3 × 3 configuration with a single spatial stream per antenna unit. The former layout is observed to provide an increase of ∼1% in the median channel capacity in both the single-and multiple-user scenarios. With 20 users and three base stations, a MIMO DAS using the latter layout offers median aggregate capacities of 259 and 233 bit/s/Hz for the LOS and NLOS scenarios, respectively. It is concluded that DAS installations can further enhance the capacity offered to multiple users by multiple 3 × 3 MIMO-enabled base stations. Further, designing future DAS systems to support broadband 3 × 3 MIMO systems may not require significant upgrades to existing installations for small numbers of spatial streams. © 2013 IEEE.
Resumo:
Electro-optic switching in short-pitch polymer stabilized chiral nematic liquid crystals was studied and the relative contributions of flexoelectric and dielectric coupling were investigated: polymer stabilization was found to effectively suppress unwanted textural transitions of the chiral nematic liquid crystal and thereby enhance the electro-optical performance (high optical contrast for visible light, a near ideal optical hysteresis, fast electro-optic response). Test cells were studied that possessed interdigitated electrodes to electrically address the liquid crystal. Based on simulations, a well-fitted phenomenological description of the electro-optic response was derived considering both flexoelectro-optic and Kerr-effect based electro-optic response. © 2014 AIP Publishing LLC.
Resumo:
We propose a constructive control design for stabilization of non-periodic trajectories of underactuated mechanical systems. An important example of such a system is an underactuated "dynamic walking" biped robot walking over rough terrain. The proposed technique is to compute a transverse linearization about the desired motion: a linear impulsive system which locally represents dynamics about a target trajectory. This system is then exponentially stabilized using a modified receding-horizon control design. The proposed method is experimentally verified using a compass-gait walker: a two-degree-of-freedom biped with hip actuation but pointed stilt-like feet. The technique is, however, very general and can be applied to higher degree-of-freedom robots over arbitrary terrain and other impulsive mechanical systems. © 2011 Springer-Verlag.
Resumo:
Three large fish pens (0.36 km(2) of each) stocked with silver and bighead carp were set up in Meiliang Bay for controlling toxic Microcystis blooms. The responses of plankton communities and food consumption of silver and bighead carp were studied. Crustacean zooplankton were significantly suppressed in the fish pens. Total phytoplankton biomass, Microcystis biomass and microcystin concentration were lower in the fish pens than in the surrounding lake water, but the difference was not statistically significant. The present stocking density of silver plus bighead carp (about 40 g/m(3) in July) was likely too low to achieve an adequate control of Microcystis. Silver carp fed mainly on phytoplankton but bighead carp mainly on zooplankton: mean zooplankton contribution in the gut was 31.5% for silver carp and 64.7% for bighead carp. Compared with previous studies, both carp species preyed upon more zooplankton because of the abundant food resource. Daily rations of silver and bighead carp were estimated by Egger's model in the main growing season. Filtration rate was calculated from the daily ration and the density of plankton in the lake. During May-October, filtration rates of silver and bighead carp for phytoplankton were 0.22-1.53 L g(-1) h(-1) and 0.02-0.68 L g(-1) h(-1), respectively, and filtration rates for zooplankton were 0.24-0.44 L g(-1) h(-1) and 0.08-1.41 L g(-1) h(-1), respectively. Silver carp had a stronger ability of eliminating phytoplankton than bighead carp. To achieve a successful bioniampulation with a minimum effect of ichthyoeutrophication, the stocking proportion of bighead carp should be controlled in the future practice. (c) 2007 Elsevier B.V All rights reserved.
Resumo:
The responses of nutrients, water transparency, zooplankton, phytoplankton and microcystins to a gradient of silver carp biomass (0, 18, 55, 110 g/m(3)) were assessed using enclosures in Lake Shichahai (Beijing). Picophytoplankton biomass increased with increasing fish stocking density (r=0.64, p=0.09). Silver carp significantly depressed zooplankton biomass, and thus, zooplankton grazing was too low to control phytoplankton. Intracellular microcystin (MC) content in the enclosures was correlated only to Microcystis biomass in the present study. Microcystis spp. biomass and intracellular microcystins content were much higher in lake water than those of enclosures with and without stocking fish. Stocking of silver carp could be an appropriate in highly productive Lake Shichahai, which naturally lacks of large cladoceran zooplankton. A fish stocking density of 55 g/m(3) was most efficient at controlling Microcystis blooms and increasing water clarity. Mean extracellular MC concentration in the lake water was almost the same with that of the enclosures with fish. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Effects of Microcystis blooms on the crustacean plankton were studied using enclosure experiments during July-September, 2000. Eight enclosures were set in the hypereutrophic Donghu Lake. Different nutrient concentrations through additional nutrient and sediment in enclosures were expected to result in different abundance of Micropystis. From July to early August, the phytoplankton community was dominated by Chlorophyta, Cryptophyta, Bacillariophyta and Cyanophyta other than Microcystis aeruginosa. M. aeruginosa showed a rapid increase during early August in all enclosures and predominated. Crustacean plankton was dominated by the herbivorous Moina micrura, Diaphanosoma brachyurum and Ceriodaphnia cornuta, and the predaceous Mesocyclops sp. and Thermocyclops taihokuensis. During the pre-bloom period, the dynamics of M. micrura population appeared to be mainly affected by the predaceous cyclopoids. With the development of Microcystis blooms, such interaction between M. micrura and cyclopoids seemed weakened, especially when the Microcystis biomass was high. But there was no apparent influence on the interaction between Leptodora kindti and its zooplanktonic prey. The density of two cyclopoids decreased with the enhancement of Microcystis. The density decline of M. micrura was caused by both predation and inhibition by Micropystis. The low food availability of other edible phytoplankton during the blooms led to low densities of both C. cornuta and D. brachyurum by late August. It appears that dense Microcystis blooms exert strong negative effects on the herbivorous cladocerans and the predaceous cyclopoids.
Resumo:
Three enclosures (10 x 10 x 1.5-1.3 m in depth) were set beside Dianch Lake, Kunming, People's Republic of China, for the period from July 28 to August 26, 2002. The enclosures were filled with cyanobacterial (Microcystis aeruginosa) water bloom-containing lake water. Lake sediment that contained macrophytes and water chestnut seeds was spread over the entire bottom of each enclosure. Initially, 10 g/m(2) of lysine was sprayed in Enclosure B, and 10 g/m(2) each of lysine and malonic acid were sprayed together in Enclosure C. Enclosure A remained untreated and was used as a control. The concentrations of lysine, malonic acid, chlorophyll a, and microcystin as well as the cell numbers of phytoplankton such as cyanobacteria, diatom, and euglena were monitored. On day 1 of the treatment, formation of cyanobacterial blooms almost ceased in Enclosures B and C, although Microcystis cells in the control still formed blooms. On day 7 Microcystis cells in Enclosure B that had been treated with lysine started growing again, whereas growth was not observed in Microcystis cells in Enclosure C, which had been treated with lysine and malonic acid. On day 28 the surface of Enclosure B was covered with water chestnut (Trapa spp.) and the Microcystis blooms again increased. In contrast, growth of macrophytes (Myriophllum spicatum and Potamogeton crispus) was observed in Enclosure C; however, no cyanobacterial blooms were observed. Lysine and malonic acid had completely decomposed. The microcystin concentration on day 28 decreased to 25% of the initial value, and the pH shifted from the initial value of 9.2 to 7.8. We concluded that combined treatment with lysine and malonic acid selectively controlled toxic Microcystis water blooms and induced the growth of macrophytes. (c) 2005 Wiley Periodicals, Inc.