853 resultados para Face representation and recognition
Resumo:
The challenge to properly feed a world population of 9.2 billion by 2050, that must be achieved on essentially currently cropped area, requires that food production be increased by 70%. This large increase can only be achieved by combinations of greater crop yields and more intensive cropping adapted to local conditions and availability of inputs. Farming systems are dynamic and continuously adapt to changing ecological, environmental and social conditions, while achieving greater production and resource-use efficiency by application of science and technology. This article argues that the solution to feed and green the world in 2050 is to support this evolution more strongly by providing farmers with necessary information, inputs, and recognition. There is no revolutionary alternative. Proposals to transform agriculture to low-input and organic systems would, because of low productiv- ity, exacerbate the challenge if applied in small part, and ensure failure if applied more widely. The challenge is, however, great. Irrigation, necessary to increase cropping intensity in many areas cannot be extended much more widely than at present, and it is uncertain if the current rate of crop yield increase can be maintained. Society needs greater recognition of the food-supply problem and must increase funding and support for agricultural research while it attends to issues of food waste and over consumption that can make valuable reductions to food demand from agriculture
Resumo:
Embedded context management in resource-constrained devices (e.g. mobile phones, autonomous sensors or smart objects) imposes special requirements in terms of lightness for data modelling and reasoning. In this paper, we explore the state-of-the-art on data representation and reasoning tools for embedded mobile reasoning and propose a light inference system (LIS) aiming at simplifying embedded inference processes offering a set of functionalities to avoid redundancy in context management operations. The system is part of a service-oriented mobile software framework, conceived to facilitate the creation of context-aware applications?it decouples sensor data acquisition and context processing from the application logic. LIS, composed of several modules, encapsulates existing lightweight tools for ontology data management and rule-based reasoning, and it is ready to run on Java-enabled handheld devices. Data management and reasoning processes are designed to handle a general ontology that enables communication among framework components. Both the applications running on top of the framework and the framework components themselves can configure the rule and query sets in order to retrieve the information they need from LIS. In order to test LIS features in a real application scenario, an ?Activity Monitor? has been designed and implemented: a personal health-persuasive application that provides feedback on the user?s lifestyle, combining data from physical and virtual sensors. In this case of use, LIS is used to timely evaluate the user?s activity level, to decide on the convenience of triggering notifications and to determine the best interface or channel to deliver these context-aware alerts.
Resumo:
Enabling Subject Matter Experts (SMEs) to formulate knowledge without the intervention of Knowledge Engineers (KEs) requires providing SMEs with methods and tools that abstract the underlying knowledge representation and allow them to focus on modeling activities. Bridging the gap between SME-authored models and their representation is challenging, especially in the case of complex knowledge types like processes, where aspects like frame management, data, and control flow need to be addressed. In this paper, we describe how SME-authored process models can be provided with an operational semantics and grounded in a knowledge representation language like F-logic in order to support process-related reasoning. The main results of this work include a formalism for process representation and a mechanism for automatically translating process diagrams into executable code following such formalism. From all the process models authored by SMEs during evaluation 82% were well-formed, all of which executed correctly. Additionally, the two optimizations applied to the code generation mechanism produced a performance improvement at reasoning time of 25% and 30% with respect to the base case, respectively.
Resumo:
Neighbourhood representation and scale used to measure the built environment have been treated in many ways. However, it is anything but clear what representation of neighbourhood is the most feasible in the existing literature. This paper presents an exhaustive analysis of built environment attributes through three spatial scales. For this purpose multiple data sources are integrated, and a set of 943 observations is analysed. This paper simultaneously analyses the influence of two methodological issues in the study of the relationship between built environment and travel behaviour: (1) detailed representation of neighbourhood by testing different spatial scales; (2) the influence of unobserved individual sensitivity to built environment attributes. The results show that different spatial scales of built environment attributes produce different results. Hence, it is important to produce local and regional transport measures, according to geographical scale. Additionally, the results show significant sensitivity to built environment attributes depending on place of residence. This effect, called residential sorting, acquires different magnitudes depending on the geographical scale used to measure the built environment attributes. Spatial scales risk to the stability of model results. Hence, transportation modellers and planners must take into account both effects of self-selection and spatial scales.
Resumo:
Recently, experts and practitioners in language resources have started recognizing the benefits of the linked data (LD) paradigm for the representation and exploitation of linguistic data on the Web. The adoption of the LD principles is leading to an emerging ecosystem of multilingual open resources that conform to the Linguistic Linked Open Data Cloud, in which datasets of linguistic data are interconnected and represented following common vocabularies, which facilitates linguistic information discovery, integration and access. In order to contribute to this initiative, this paper summarizes several key aspects of the representation of linguistic information as linked data from a practical perspective. The main goal of this document is to provide the basic ideas and tools for migrating language resources (lexicons, corpora, etc.) as LD on the Web and to develop some useful NLP tasks with them (e.g., word sense disambiguation). Such material was the basis of a tutorial imparted at the EKAW’14 conference, which is also reported in the paper.
Resumo:
La familia de algoritmos de Boosting son un tipo de técnicas de clasificación y regresión que han demostrado ser muy eficaces en problemas de Visión Computacional. Tal es el caso de los problemas de detección, de seguimiento o bien de reconocimiento de caras, personas, objetos deformables y acciones. El primer y más popular algoritmo de Boosting, AdaBoost, fue concebido para problemas binarios. Desde entonces, muchas han sido las propuestas que han aparecido con objeto de trasladarlo a otros dominios más generales: multiclase, multilabel, con costes, etc. Nuestro interés se centra en extender AdaBoost al terreno de la clasificación multiclase, considerándolo como un primer paso para posteriores ampliaciones. En la presente tesis proponemos dos algoritmos de Boosting para problemas multiclase basados en nuevas derivaciones del concepto margen. El primero de ellos, PIBoost, está concebido para abordar el problema descomponiéndolo en subproblemas binarios. Por un lado, usamos una codificación vectorial para representar etiquetas y, por otro, utilizamos la función de pérdida exponencial multiclase para evaluar las respuestas. Esta codificación produce un conjunto de valores margen que conllevan un rango de penalizaciones en caso de fallo y recompensas en caso de acierto. La optimización iterativa del modelo genera un proceso de Boosting asimétrico cuyos costes dependen del número de etiquetas separadas por cada clasificador débil. De este modo nuestro algoritmo de Boosting tiene en cuenta el desbalanceo debido a las clases a la hora de construir el clasificador. El resultado es un método bien fundamentado que extiende de manera canónica al AdaBoost original. El segundo algoritmo propuesto, BAdaCost, está concebido para problemas multiclase dotados de una matriz de costes. Motivados por los escasos trabajos dedicados a generalizar AdaBoost al terreno multiclase con costes, hemos propuesto un nuevo concepto de margen que, a su vez, permite derivar una función de pérdida adecuada para evaluar costes. Consideramos nuestro algoritmo como la extensión más canónica de AdaBoost para este tipo de problemas, ya que generaliza a los algoritmos SAMME, Cost-Sensitive AdaBoost y PIBoost. Por otro lado, sugerimos un simple procedimiento para calcular matrices de coste adecuadas para mejorar el rendimiento de Boosting a la hora de abordar problemas estándar y problemas con datos desbalanceados. Una serie de experimentos nos sirven para demostrar la efectividad de ambos métodos frente a otros conocidos algoritmos de Boosting multiclase en sus respectivas áreas. En dichos experimentos se usan bases de datos de referencia en el área de Machine Learning, en primer lugar para minimizar errores y en segundo lugar para minimizar costes. Además, hemos podido aplicar BAdaCost con éxito a un proceso de segmentación, un caso particular de problema con datos desbalanceados. Concluimos justificando el horizonte de futuro que encierra el marco de trabajo que presentamos, tanto por su aplicabilidad como por su flexibilidad teórica. Abstract The family of Boosting algorithms represents a type of classification and regression approach that has shown to be very effective in Computer Vision problems. Such is the case of detection, tracking and recognition of faces, people, deformable objects and actions. The first and most popular algorithm, AdaBoost, was introduced in the context of binary classification. Since then, many works have been proposed to extend it to the more general multi-class, multi-label, costsensitive, etc... domains. Our interest is centered in extending AdaBoost to two problems in the multi-class field, considering it a first step for upcoming generalizations. In this dissertation we propose two Boosting algorithms for multi-class classification based on new generalizations of the concept of margin. The first of them, PIBoost, is conceived to tackle the multi-class problem by solving many binary sub-problems. We use a vectorial codification to represent class labels and a multi-class exponential loss function to evaluate classifier responses. This representation produces a set of margin values that provide a range of penalties for failures and rewards for successes. The stagewise optimization of this model introduces an asymmetric Boosting procedure whose costs depend on the number of classes separated by each weak-learner. In this way the Boosting procedure takes into account class imbalances when building the ensemble. The resulting algorithm is a well grounded method that canonically extends the original AdaBoost. The second algorithm proposed, BAdaCost, is conceived for multi-class problems endowed with a cost matrix. Motivated by the few cost-sensitive extensions of AdaBoost to the multi-class field, we propose a new margin that, in turn, yields a new loss function appropriate for evaluating costs. Since BAdaCost generalizes SAMME, Cost-Sensitive AdaBoost and PIBoost algorithms, we consider our algorithm as a canonical extension of AdaBoost to this kind of problems. We additionally suggest a simple procedure to compute cost matrices that improve the performance of Boosting in standard and unbalanced problems. A set of experiments is carried out to demonstrate the effectiveness of both methods against other relevant Boosting algorithms in their respective areas. In the experiments we resort to benchmark data sets used in the Machine Learning community, firstly for minimizing classification errors and secondly for minimizing costs. In addition, we successfully applied BAdaCost to a segmentation task, a particular problem in presence of imbalanced data. We conclude the thesis justifying the horizon of future improvements encompassed in our framework, due to its applicability and theoretical flexibility.
Resumo:
El uso de técnicas para la monitorización del movimiento humano generalmente permite a los investigadores analizar la cinemática y especialmente las capacidades motoras en aquellas actividades de la vida cotidiana que persiguen un objetivo concreto como pueden ser la preparación de bebidas y comida, e incluso en tareas de aseo. Adicionalmente, la evaluación del movimiento y el comportamiento humanos en el campo de la rehabilitación cognitiva es esencial para profundizar en las dificultades que algunas personas encuentran en la ejecución de actividades diarias después de accidentes cerebro-vasculares. Estas dificultades están principalmente asociadas a la realización de pasos secuenciales y al reconocimiento del uso de herramientas y objetos. La interpretación de los datos sobre la actitud de este tipo de pacientes para reconocer y determinar el nivel de éxito en la ejecución de las acciones, y para ampliar el conocimiento en las enfermedades cerebrales, sus consecuencias y severidad, depende totalmente de los dispositivos usados para la captura de esos datos y de la calidad de los mismos. Más aún, existe una necesidad real de mejorar las técnicas actuales de rehabilitación cognitiva contribuyendo al diseño de sistemas automáticos para crear una especie de terapeuta virtual que asegure una vida más independiente de estos pacientes y reduzca la carga de trabajo de los terapeutas. Con este objetivo, el uso de sensores y dispositivos para obtener datos en tiempo real de la ejecución y estado de la tarea de rehabilitación es esencial para también contribuir al diseño y entrenamiento de futuros algoritmos que pudieran reconocer errores automáticamente para informar al paciente acerca de ellos mediante distintos tipos de pistas como pueden ser imágenes, mensajes auditivos o incluso videos. La tecnología y soluciones existentes en este campo no ofrecen una manera totalmente robusta y efectiva para obtener datos en tiempo real, por un lado, porque pueden influir en el movimiento del propio paciente en caso de las plataformas basadas en el uso de marcadores que necesitan sensores pegados en la piel; y por otro lado, debido a la complejidad o alto coste de implantación lo que hace difícil pensar en la idea de instalar un sistema en el hospital o incluso en la casa del paciente. Esta tesis presenta la investigación realizada en el campo de la monitorización del movimiento de pacientes para proporcionar un paso adelante en términos de detección, seguimiento y reconocimiento del comportamiento de manos, gestos y cara mediante una manera no invasiva la cual puede mejorar la técnicas actuales de rehabilitación cognitiva para la adquisición en tiempo real de datos sobre el comportamiento del paciente y la ejecución de la tarea. Para entender la importancia del marco de esta tesis, inicialmente se presenta un resumen de las principales enfermedades cognitivas y se introducen las consecuencias que tienen en la ejecución de tareas de la vida diaria. Más aún, se investiga sobre las metodologías actuales de rehabilitación cognitiva. Teniendo en cuenta que las manos son la principal parte del cuerpo para la ejecución de tareas manuales de la vida cotidiana, también se resumen las tecnologías existentes para la captura de movimiento de manos. Una de las principales contribuciones de esta tesis está relacionada con el diseño y evaluación de una solución no invasiva para detectar y seguir las manos durante la ejecución de tareas manuales de la vida cotidiana que a su vez involucran la manipulación de objetos. Esta solución la cual no necesita marcadores adicionales y está basada en una cámara de profundidad de bajo coste, es robusta, precisa y fácil de instalar. Otra contribución presentada se centra en el reconocimiento de gestos para detectar el agarre de objetos basado en un sensor infrarrojo de última generación, y también complementado con una cámara de profundidad. Esta nueva técnica, y también no invasiva, sincroniza ambos sensores para seguir objetos específicos además de reconocer eventos concretos relacionados con tareas de aseo. Más aún, se realiza una evaluación preliminar del reconocimiento de expresiones faciales para analizar si es adecuado para el reconocimiento del estado de ánimo durante la tarea. Por su parte, todos los componentes y algoritmos desarrollados son integrados en un prototipo simple para ser usado como plataforma de monitorización. Se realiza una evaluación técnica del funcionamiento de cada dispositivo para analizar si es adecuada para adquirir datos en tiempo real durante la ejecución de tareas cotidianas reales. Finalmente, se estudia la interacción con pacientes reales para obtener información del nivel de usabilidad del prototipo. Dicha información es esencial y útil para considerar una rehabilitación cognitiva basada en la idea de instalación del sistema en la propia casa del paciente al igual que en el hospital correspondiente. ABSTRACT The use of human motion monitoring techniques usually let researchers to analyse kinematics, especially in motor strategies for goal-oriented activities of daily living, such as the preparation of drinks and food, and even grooming tasks. Additionally, the evaluation of human movements and behaviour in the field of cognitive rehabilitation is essential to deep into the difficulties some people find in common activities after stroke. This difficulties are mainly associated with sequence actions and the recognition of tools usage. The interpretation of attitude data of this kind of patients in order to recognize and determine the level of success of the execution of actions, and to broaden the knowledge in brain diseases, consequences and severity, depends totally on the devices used for the capture of that data and the quality of it. Moreover, there is a real need of improving the current cognitive rehabilitation techniques by contributing to the design of automatic systems to create a kind of virtual therapist for the improvement of the independent life of these stroke patients and to reduce the workload of the occupational therapists currently in charge of them. For this purpose, the use of sensors and devices to obtain real time data of the execution and state of the rehabilitation task is essential to also contribute to the design and training of future smart algorithms which may recognise errors to automatically provide multimodal feedback through different types of cues such as still images, auditory messages or even videos. The technology and solutions currently adopted in the field don't offer a totally robust and effective way for obtaining real time data, on the one hand, because they may influence the patient's movement in case of marker-based platforms which need sensors attached to the skin; and on the other hand, because of the complexity or high cost of implementation, which make difficult the idea of installing a system at the hospital or even patient's home. This thesis presents the research done in the field of user monitoring to provide a step forward in terms of detection, tracking and recognition of hand movements, gestures and face via a non-invasive way which could improve current techniques for cognitive rehabilitation for real time data acquisition of patient's behaviour and execution of the task. In order to understand the importance of the scope of the thesis, initially, a summary of the main cognitive diseases that require for rehabilitation and an introduction of the consequences on the execution of daily tasks are presented. Moreover, research is done about the actual methodology to provide cognitive rehabilitation. Considering that the main body members involved in the completion of a handmade daily task are the hands, the current technologies for human hands movements capture are also highlighted. One of the main contributions of this thesis is related to the design and evaluation of a non-invasive approach to detect and track user's hands during the execution of handmade activities of daily living which involve the manipulation of objects. This approach does not need the inclusion of any additional markers. In addition, it is only based on a low-cost depth camera, it is robust, accurate and easy to install. Another contribution presented is focused on the hand gesture recognition for detecting object grasping based on a brand new infrared sensor, and also complemented with a depth camera. This new, and also non-invasive, solution which synchronizes both sensors to track specific tools as well as recognize specific events related to grooming is evaluated. Moreover, a preliminary assessment of the recognition of facial expressions is carried out to analyse if it is adequate for recognizing mood during the execution of task. Meanwhile, all the corresponding hardware and software developed are integrated in a simple prototype with the purpose of being used as a platform for monitoring the execution of the rehabilitation task. Technical evaluation of the performance of each device is carried out in order to analyze its suitability to acquire real time data during the execution of real daily tasks. Finally, a kind of healthcare evaluation is also presented to obtain feedback about the usability of the system proposed paying special attention to the interaction with real users and stroke patients. This feedback is quite useful to consider the idea of a home-based cognitive rehabilitation as well as a possible hospital installation of the prototype.
Resumo:
A more natural, intuitive, user-friendly, and less intrusive Human–Computer interface for controlling an application by executing hand gestures is presented. For this purpose, a robust vision-based hand-gesture recognition system has been developed, and a new database has been created to test it. The system is divided into three stages: detection, tracking, and recognition. The detection stage searches in every frame of a video sequence potential hand poses using a binary Support Vector Machine classifier and Local Binary Patterns as feature vectors. These detections are employed as input of a tracker to generate a spatio-temporal trajectory of hand poses. Finally, the recognition stage segments a spatio-temporal volume of data using the obtained trajectories, and compute a video descriptor called Volumetric Spatiograms of Local Binary Patterns (VS-LBP), which is delivered to a bank of SVM classifiers to perform the gesture recognition. The VS-LBP is a novel video descriptor that constitutes one of the most important contributions of the paper, which is able to provide much richer spatio-temporal information than other existing approaches in the state of the art with a manageable computational cost. Excellent results have been obtained outperforming other approaches of the state of the art.
Resumo:
The aim of this Master Thesis is the analysis, design and development of a robust and reliable Human-Computer Interaction interface, based on visual hand-gesture recognition. The implementation of the required functions is oriented to the simulation of a classical hardware interaction device: the mouse, by recognizing a specific hand-gesture vocabulary in color video sequences. For this purpose, a prototype of a hand-gesture recognition system has been designed and implemented, which is composed of three stages: detection, tracking and recognition. This system is based on machine learning methods and pattern recognition techniques, which have been integrated together with other image processing approaches to get a high recognition accuracy and a low computational cost. Regarding pattern recongition techniques, several algorithms and strategies have been designed and implemented, which are applicable to color images and video sequences. The design of these algorithms has the purpose of extracting spatial and spatio-temporal features from static and dynamic hand gestures, in order to identify them in a robust and reliable way. Finally, a visual database containing the necessary vocabulary of gestures for interacting with the computer has been created.
Resumo:
Este estudo trata da comunicação face a face nas organizações sob diferentes abordagens teóricas. Considera a perspectiva da simultaneidade dos meios, já que as empresas utilizam diversos canais para dialogar com seus públicos de interesse. Leva em conta o fenômeno da midiatização, que reestrutura o modo como as pessoas se relacionam na sociedade contemporânea. O objetivo geral da pesquisa é sistematizar papeis potencialmente exercidos pela interação face a face e conhecer algumas circunstâncias que envolvem sua prática nas organizações. Por se tratar de uma tese teórica, a pesquisa bibliográfica se apresenta como um dos principais procedimentos metodológicos; análises de casos empíricos e um estudo de caso desenvolvido na Embrapa Pantanal constituem situações ilustrativas. Conclui-se que a comunicação face a face nas empresas ocorre de forma simultânea e combinada a outros canais de comunicação, porém, ela proporciona resultados práticos e filosóficos ainda pouco explorados. É rara a utilização estratégica de contatos presenciais como mecanismo para estabelecer relacionamentos, conhecer as reações alheias e ajustar a comunicação, aliar o discurso corporativo às práticas empresariais e avaliar o contexto onde se desenvolvem as interações, o que pode ser decisivo para a comunicação organizacional.
Resumo:
Somatotopic maps in the cortex and the thalamus of adult monkeys and humans reorganize in response to altered inputs. After loss of the sensory afferents from the forelimb in monkeys because of transection of the dorsal columns of the spinal cord, therapeutic amputation of an arm or transection of the dorsal roots of the peripheral nerves, the deprived portions of the hand and arm representations in primary somatosensory cortex (area 3b), become responsive to inputs from the face and any remaining afferents from the arm. Cortical and subcortical mechanisms that underlie this reorganization are uncertain and appear to be manifold. Here we show that the face afferents from the trigeminal nucleus of the brainstem sprout and grow into the cuneate nucleus in adult monkeys after lesions of the dorsal columns of the spinal cord or therapeutic amputation of an arm. This growth may underlie the large-scale expansion of the face representation into the hand region of somatosensory cortex that follows such deafferentations.
Resumo:
There are defined medullary, mesencephalic, hypothalamic, and thalamic functions in regulation of respiration, but knowledge of cortical control and the elements subserving the consciousness of breathlessness and air hunger is limited. In nine young adults, air hunger was produced acutely by CO2 inhalation. Comparisons were made with inhalation of a N2/O2 gas mixture with the same apparatus, and also with paced breathing, and with eyes closed rest. A network of activations in pons, midbrain (mesencephalic tegmentum, parabrachial nucleus, and periaqueductal gray), hypothalamus, limbic and paralimbic areas (amygdala and periamygdalar region) cingulate, parahippocampal and fusiform gyrus, and anterior insula were seen along with caudate nuclei and pulvinar activations. Strong deactivations were seen in dorsal cingulate, posterior cingulate, and prefrontal cortex. The striking response of limbic and paralimbic regions points to these structures having a singular role in the affective sequelae entrained by disturbance of basic respiratory control whereby a process of which we are normally unaware becomes a salient element of consciousness. These activations and deactivations include phylogenetically ancient areas of allocortex and transitional cortex that together with the amygdalar/periamygdalar region may subserve functions of emotional representation and regulation of breathing.
Resumo:
A 12 bp long GCN4-binding, self-complementary duplex DNA d(CATGACGTCATG)2 has been investigated by NMR spectroscopy to study the structure and dynamics of the molecule in aqueous solution. The NMR structure of the DNA obtained using simulated annealing and iterative relaxation matrix calculations compares quite closely with the X-ray structure of ATF/CREB DNA in complex with GCN4 protein (DNA-binding domain). The DNA is also seen to be curved in the free state and this has a significant bearing on recognition by the protein. The dynamic characteristics of the molecule have been studied by 13C relaxation measurements at natural abundance. A correlation has been observed between sequence-dependent dynamics and recognition by GCN4 protein.
Resumo:
In optimal foraging theory, search time is a key variable defining the value of a prey type. But the sensory-perceptual processes that constrain the search for food have rarely been considered. Here we evaluate the flight behavior of bumblebees (Bombus terrestris) searching for artificial flowers of various sizes and colors. When flowers were large, search times correlated well with the color contrast of the targets with their green foliage-type background, as predicted by a model of color opponent coding using inputs from the bees' UV, blue, and green receptors. Targets that made poor color contrast with their backdrop, such as white, UV-reflecting ones, or red flowers, took longest to detect, even though brightness contrast with the background was pronounced. When searching for small targets, bees changed their strategy in several ways. They flew significantly slower and closer to the ground, so increasing the minimum detectable area subtended by an object on the ground. In addition, they used a different neuronal channel for flower detection. Instead of color contrast, they used only the green receptor signal for detection. We relate these findings to temporal and spatial limitations of different neuronal channels involved in stimulus detection and recognition. Thus, foraging speed may not be limited only by factors such as prey density, flight energetics, and scramble competition. Our results show that understanding the behavioral ecology of foraging can substantially gain from knowledge about mechanisms of visual information processing.
Resumo:
The genes for the protein synthesis elongation factors Tu (EF-Tu) and G (EF-G) are the products of an ancient gene duplication, which appears to predate the divergence of all extant organismal lineages. Thus, it should be possible to root a universal phylogeny based on either protein using the second protein as an outgroup. This approach was originally taken independently with two separate gene duplication pairs, (i) the regulatory and catalytic subunits of the proton ATPases and (ii) the protein synthesis elongation factors EF-Tu and EF-G. Questions about the orthology of the ATPase genes have obscured the former results, and the elongation factor data have been criticized for inadequate taxonomic representation and alignment errors. We have expanded the latter analysis using a broad representation of taxa from all three domains of life. All phylogenetic methods used strongly place the root of the universal tree between two highly distinct groups, the archaeons/eukaryotes and the eubacteria. We also find that a combined data set of EF-Tu and EF-G sequences favors placement of the eukaryotes within the Archaea, as the sister group to the Crenarchaeota. This relationship is supported by bootstrap values of 60-89% with various distance and maximum likelihood methods, while unweighted parsimony gives 58% support for archaeal monophyly.