982 resultados para FOREST FRAGMENTS
Resumo:
Spontaneous halide ejection from a three-coordinate Lewis acid has been shown to offer a remarkable new route to cationic metal complexes featuring a linear, multiply bonded boron-donor Ligand. The exploitation of electron-rich [CpM(PR3)(2)] fragments within boryl systems of the type LnMB(hal)NR2 leads to the spontaneous formation in polar solvents of chemically robust borylene complexes, [LnM(BNR2)](+), with exceptionally low electrophilicity and short M-B bonds. This is reflected by M-B distances (ca. 1.80 angstrom for FeB systems) which are more akin to alkyl-/aryl-substituted borylene complexes and, perhaps most strikingly, by the very low exothermicity associated with the binding of pyridine to the two-coordinate boron center (Delta H = -7.4 kcal mol(-1), cf. -40.7 kcal mol(-1) for BCl3). Despite the strong pi electron release from the metal fragment implied by this suppressed reactivity and by such short M-B bonds, the barrier to rotation about the Fe=B bond in the unsymmetrical variant [CpFe(dmpe)(BN{C6H4OMe-4}Me)](+) is found to be very small (ca. 2.9 kcal mol(-1)). This apparent contradiction is rationalized by the orthogonal orientations of the HOMO and HOMO-2 orbitals of the [CpML2](+) fragment, which mean that the M-B pi interaction does not fall to zero even in the highest energy conformation.
Resumo:
Fragment Finder 2.0 is a web-based interactive computing server which can be used to retrieve structurally similar protein fragments from 25 and 90% nonredundant data sets. The computing server identifies structurally similar fragments using the protein backbone C alpha angles. In addition, the identified fragments can be superimposed using either of the two structural superposition programs, STAMP and PROFIT, provided in the server. The freely available Java plug-in Jmol has been interfaced with the server for the visualization of the query and superposed fragments. The server is the updated version of a previously developed search engine and employs an in-house-developed fast pattern matching algorithm. This server can be accessed freely over the World Wide Web through the URL http://cluster.physics.iisc.ernet.in/ff/.
Resumo:
The rapidly growing structure databases enhance the probability of finding identical sequences sharing structural similarity. Structure prediction methods are being used extensively to abridge the gap between known protein sequences and the solved structures which is essential to understand its specific biochemical and cellular functions. In this work, we plan to study the ambiguity between sequence-structure relationships and examine if sequentially identical peptide fragments adopt similar three-dimensional structures. Fragments of varying lengths (five to ten residues) were used to observe the behavior of sequence and its three-dimensional structures. The STAMP program was used to superpose the three-dimensional structures and the two parameters (Sequence Structure Similarity Score (Sc) and Root Mean Square Deviation value) were employed to classify them into three categories: similar, intermediate and dissimilar structures. Furthermore, the same approach was carried out on all the three-dimensional protein structures solved in the two organisms, Mycobacterium tuberculosis and Plasmodium falciparum to validate our results.
Resumo:
Reducing emissions from deforestation and forest degradation (REDD+) is considered as an important mechanism under the UNFCCC aimed at mitigating climate change. The Cancun Agreement on REDD mechanism has paved the way for designing and implementation of REDD+ activities, to assist countries experiencing large-scale deforestation and forest degradation. Contrary to the general perception, the present analysis shows that India is currently experiencing deforestation and forest degradation. According to the latest assessment of the Forest Survey of India, the net annual loss of forests is estimated to be 99,850 ha during the period 2007-2009, even though the total area under forests has increased. The REDD+ mechanism aims to provide financial incentives for reducing deforestation and forest degradation. India, despite having robust legislations, policies and remote sensing capabilities, is not ready to benefit from the emerging REDD+ mechanism, with potential flow of large financial benefits to rural and forest-dependent communities from international financial sources.
Resumo:
Niche differentiation has been proposed as an explanation for rarity in species assemblages. To test this hypothesis requires quantifying the ecological similarity of species. This similarity can potentially be estimated by using phylogenetic relatedness. In this study, we predicted that if niche differentiation does explain the co-occurrence of rare and common species, then rare species should contribute greatly to the overall community phylogenetic diversity (PD), abundance will have phylogenetic signal, and common and rare species will be phylogenetically dissimilar. We tested these predictions by developing a novel method that integrates species rank abundance distributions with phylogenetic trees and trend analyses, to examine the relative contribution of individual species to the overall community PD. We then supplement this approach with analyses of phylogenetic signal in abundances and measures of phylogenetic similarity within and between rare and common species groups. We applied this analytical approach to 15 long-term temperate and tropical forest dynamics plots from around the world. We show that the niche differentiation hypothesis is supported in six of the nine gap-dominated forests but is rejected in the six disturbance-dominated and three gap-dominated forests. We also show that the three metrics utilized in this study each provide unique but corroborating information regarding the phylogenetic distribution of rarity in communities.
Resumo:
The rapid disruption of tropical forests probably imperils global biodiversity more than any other contemporary phenomenon(1-3). With deforestation advancing quickly, protected areas are increasingly becoming final refuges for threatened species and natural ecosystem processes. However, many protected areas in the tropics are themselves vulnerable to human encroachment and other environmental stresses(4-9). As pressures mount, it is vital to know whether existing reserves can sustain their biodiversity. A critical constraint in addressing this question has been that data describing a broad array of biodiversity groups have been unavailable for a sufficiently large and representative sample of reserves. Here we present a uniquely comprehensive data set on changes over the past 20 to 30 years in 31 functional groups of species and 21 potential drivers of environmental change, for 60 protected areas stratified across the world's major tropical regions. Our analysis reveals great variation in reserve `health': about half of all reserves have been effective or performed passably, but the rest are experiencing an erosion of biodiversity that is often alarmingly widespread taxonomically and functionally. Habitat disruption, hunting and forest-product exploitation were the strongest predictors of declining reserve health. Crucially, environmental changes immediately outside reserves seemed nearly as important as those inside in determining their ecological fate, with changes inside reserves strongly mirroring those occurring around them. These findings suggest that tropical protected areas are often intimately linked ecologically to their surrounding habitats, and that a failure to stem broad-scale loss and degradation of such habitats could sharply increase the likelihood of serious biodiversity declines.
Resumo:
Native species' response to the presence of invasive species is context specific. This response cannot be studied in isolation from the prevailing environmental stresses in invaded habitats such as seasonal drought. We investigated the combined effects of an invasive shrub Lantana camara L. (lantana), seasonal rainfall and species' microsite preferences on the growth and survival of 1,105 naturally established seedlings of native trees and shrubs in a seasonally dry tropical forest. Individuals were followed from April 2008 to February 2010, and growth and survival measured in relation to lantana density, seasonality of rainfall and species characteristics in a 50-ha permanent forest plot located in Mudumalai, southern India. We used a mixed effects modelling approach to examine seedling growth and generalized linear models to examine seedling survival. The overall relative height growth rate of established seedlings was found to be very low irrespective of the presence or absence of dense lantana. 22-month growth rate of dry forest species was lower under dense lantana while moist forest species were not affected by the presence of lantana thickets. 4-month growth rates of all species increased with increasing inter-census rainfall. Community results may be influenced by responses of the most abundant species, Catunaregam spinosa, whose growth rates were always lower under dense lantana. Overall seedling survival was high, increased with increasing rainfall and was higher for species with dry forest preference than for species with moist forest preference. The high survival rates of naturally established seedlings combined with their basal sprouting ability in this forest could enable the persistence of woody species in the face of invasive species.
Resumo:
Effective conservation and management of natural resources requires up-to-date information of the land cover (LC) types and their dynamics. The LC dynamics are being captured using multi-resolution remote sensing (RS) data with appropriate classification strategies. RS data with important environmental layers (either remotely acquired or derived from ground measurements) would however be more effective in addressing LC dynamics and associated changes. These ancillary layers provide additional information for delineating LC classes' decision boundaries compared to the conventional classification techniques. This communication ascertains the possibility of improved classification accuracy of RS data with ancillary and derived geographical layers such as vegetation index, temperature, digital elevation model (DEM), aspect, slope and texture. This has been implemented in three terrains of varying topography. The study would help in the selection of appropriate ancillary data depending on the terrain for better classified information.
Resumo:
Aluminium and zinc are known to be the major triggering agents for aggregation of amyloid peptides leading to plaque formation in Alzheimer's disease. While zinc binding to histidine in A (amyloid ) fragments has been implicated as responsible for aggregation, not much information is available on the interaction of aluminium with histidine. In the NMR study of the N-terminal A fragments, DAEFRHDSGYEV (A12) and DAEFRHDSGYEVHHQK (A16) presented here, the interactions of the fragments with aluminium have been investigated. Significant chemical shifts were observed for few residues near the C-terminus when aluminium chloride was titrated with A12 and A16 peptides. Surprisingly, it is nonhistidine residues which seem to be involved in aluminium binding. Based on NMR constrained structure obtained by molecular modelling, aluminium-binding pockets in A12 were around charged residues such as Asp, Glu. The results are discussed in terms of native structure propagation, and the relevance of histidine residues in the sequences for metal-binding interactions. We expect that the study of such short amyloid peptide fragments will not only provide clues for plaque formation in aggregated conditions but also facilitate design of potential drugs for these targets.
Resumo:
The feasibility of using transition metal fragments to stabilize B2H4 in planar configuration by donating 2 electrons to the boron moiety is investigated. Building upon the existing theoretical and experimental data and aided by the isolobal analogy, the model transition metal complexes Cr(CO)(4)B2H4 (6), Mn(CO)-CpB2H4 (7), Fe(CO)(3)B2H4 (8) and CoCpB2H4 (9) are chosen to illustrate this unique bonding feature bond strengthening with pi-back donation. Other possible types of complexes with B2H4 and the metal fragment are also explored and the energies are compared. One of the low energy isomers wherein the planar B2H4 interacts with the metal fragment in an in-plane fashion represents a unique case study for the Dewar-Chatt-Duncanson model. In this complex the back-donation from the metal fills the p bonding orbital between the two boron atoms thus forming a B=B double bond.