959 resultados para FIELD EMISSION


Relevância:

60.00% 60.00%

Publicador:

Resumo:

Tin oxide (SnO) powders were obtained by the microwave-assisted hydrothermal synthesis technique using SnCl2 center dot 2H(2)O as a precursor. By changing the hydrothermal processing time, temperature, the type of mineralizing agent (NaOH, KOH or NH4 OH) and its concentration, SnO crystals having different sizes and morphologies could be achieved. The powders were characterized by X-ray diffraction (X-ray), Field Emission Scanning Electron Microscopy (FE-SEM), High Resolution Transmission Electron Microscopy (HR-TEM) and Selected Area Electron Diffraction (SAED). The results showed that plate-like form is the characteristic morphology of growth and the TEM analyses indicate the growth direction as (200). (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The main aim of this study was to develop dense and conducting SnO 2 ceramics without precipitated phases on the grain boundaries, which was verified using field emission scanning microscopy (FE-SEM) coupled with an energy-dispersive X-ray spectroscopy (FE-SEM/EDS). Two sample groups were investigated, where the first sample group was doped with zinc while the second one was doped with cobalt. The ceramics were prepared using the oxides mixture method and the sintering was carried out in a conventional muffle oven as well as in microwave oven. The results obtained were found to be similar regarding the relative density for the two sintering methods while time and temperature gains were observed for the microwave sintering method. The relative densities obtained were nearly 95%, for the two sintering methods. Concerning the electrical characterization measurements-electric field x current density as well as the environment temperature, the ceramics obtained through the conventional sintering method presented non-ohmic behavior. For the microwave sintered ceramics, we observed an ohmic behavior with electrical resistivity of 1.3 Ωcm for the samples doped with ZnO/Nb 2O 5 and 2.5 Ωcm for that of the samples doped with CoO/Nb 2O 5. The FE-SEM/EDS results for the microwave sintered ceramics indicated a structure with a reduced number of pores and other phases segregated at the grain boundaries, which leads to a better conductive ceramic than the conventional oven sintered samples. The dilatometry analysis determined the muffle sintering temperature and the difference between the densification of cobalt and zinc oxides. The addition of niobium oxide resulted in the decrease in resistivity, which thus led us to conclude that it is possible to obtain dense ceramics with low electrical resistivity based on SnO 2 using commercial oxides by the oxides mixture technique and the microwave oven sintering method. Copyright © 2011 American Scientific Publishers All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cellulose nanofibrils (CNF) were extracted by acid hydrolysis from cotton microfibrils and nanocomposites with polyaniline doped with dodecyl benzenesulphonic acid (PANI-DBSA) were obtained by in situ polymerization of aniline onto CNF. The ratios between DBSA to aniline and aniline to oxidant were varied in situ and the nanocomposites characterized by four probe DC electrical conductivity, ultraviolet-visible-near infrared (UV-Vis - NIR) and Fourier-transform infrared (FTIR) spectroscopies and X-ray diffraction (XRD). FTIR and UV-Vis/NIR characterization confirmed the polymerization of PANI onto CNF surfaces. Electrical conductivity of about 10 -1 S/cm was achieved for the composites; conductivity was mostly independent of DBSA/aniline (between 2 and 4) and aniline/oxidant (between 1 and 5) molar ratios. X-ray patterns of the samples showed crystalline peaks characteristic of cellulose I for CNF samples, and a mixture of both characteristic peaks of PANI and CNF for the nanocomposites. Field emission scanning electron microscopy (FESEM) characterization corroborated the abovementioned results showing that PANI coated the surface of the nanofibrils. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

ZnO thin films were prepared by the polymeric precursor method. The films were deposited on silicon substrates using the spin-coating technique, and were annealed at 330°C for 32h under pressure-assisted thermal annealing and under ambient pressure. Their structural and optical properties were characterized, and the phases formed were identified by X-ray diffraction. No secondary phase was detected. The ZnO thin films were also characterized by field-emission scanning electron microscopy, Fourier transform infrared spectroscopy, photoluminescence and ultraviolet emission intensity measurements. The effect of pressure on these thin films modifies the active defects that cause the recombination of deep level states located inside the band gap that emit yellow-green (575nm) and orange (645nm) photoluminescence. © 2012 John Wiley & Sons, Ltd.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper reports our initial research to obtain SrWO4 microcrystals by the injection of ions into a hot aqueous solution and their photocatalytic (PC) properties. These microcrystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinements and Fourier transform (FT)-Raman spectroscopy. The shape and average size of these SrWO 4 microcrystals were observed by field emission scanning electron microscopy (FE-SEM) and transmission electron microscopy (TEM). In addition, we have investigated the PC activity of microcrystals for the degradation of rhodamine B (RhB) and rhodamine 6G (Rh6G) dyes. XRD patterns, Rietveld refinement data and FT-Raman spectroscopy confirmed that SrWO4 microcrystals have a scheelite-type tetragonal structure without deleterious phases. FT-Raman spectra exhibited 12 Raman-active modes in a range from 50 to 1000 cm-1. FE-SEM and TEM images suggested that the SrWO4 microcrystals (rice-like - 95%; star-, flower-, and urchin-like - 5%) were formed by means of primary/secondary nucleation events and self-assembly processes. Based on these FE-SEM/TEM images, a crystal growth mechanism was proposed and discussed in details in this work. Finally, a good PC activity was first discovered of the SrWO4 microcrystals for the degradation of RhB after 80 min and Rh6G after 50 min dyes under ultraviolet-light, respectively. © 2012 The Society of Powder Technology Japan. Published by Elsevier B.V. and The Society of Powder.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This paper describes research on a simple low-temperature synthesis route to prepare bismuth ferrite nanopowders by the polymeric precursor method using bismuth and iron nitrates. BiFeO 3 (BFO) nanopowders were characterized by means of X-ray diffraction analyses, (XRD), Fourier transform infrared (FT-IR) spectroscopy, Raman spectroscopy (Raman), thermogravimnetric analyses (TG-DTA), ultra-violet/vis (UV/Vis) and field emission scanning electron microscopy (FE-SEM). XRD patterns confirmed that a pure perovskite BiFeO 3 structure with a rhombohedral distorted perovskite structure was obtained by heating at 850 °C for 4 hours. Typical FT-IR spectra for BFO powders revealed the formation of a perovskite structure at high temperatures due to a metal-oxygen bond while Raman modes indicated oxygen octahedral tilts induced by structural distortion. A homogeneous size distribution of BFO powders obtained at 850 °C for 4 hours was verified by FE-SEM analyses. © 2012 Elsevier Ltd and Techna Group S.r.l.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Lead molybdate (PbMoO4) crystals were synthesized by the co-precipitation method at room temperature and then processed in a conventional hydrothermal (CH) system at low temperature (70 °C for different times). These crystals were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, micro-Raman (MR) and Fourier transformed infrared (FT-IR) spectroscopies. Field emission scanning electron microscopy images were employed to observe the shape and monitor the crystal growth process. The optical properties were investigated by ultraviolet-visible (UV-Vis) absorption and photoluminescence (PL) measurements. XRD patterns and MR spectra indicate that these crystals have a scheelite-type tetragonal structure. Rietveld refinement data possibilities the evaluation of distortions in the tetrahedral [MoO 4] clusters. MR and FT-IR spectra exhibited a high mode ν1(Ag) ascribed to symmetric stretching vibrations as well as a large absorption band with two modes ν3(Eu and Au) related to anti-symmetric stretching vibrations in [MoO 4] clusters. Growth mechanisms were proposed to explain the stages involved for the formation of octahedron-like PbMoO4 crystals. UV-Vis absorption spectra indicate a reduction in optical band gap with an increase in the CH processing time. PL properties of PbMoO4 crystals have been elucidated using a model based on distortions of tetrahedral [MoO4] clusters due to medium-range intrinsic defects and intermediary energy levels (deep and shallow holes) within the band gap. © 2012 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Cystalline ceria (CeO2) nanoparticles have been synthesized by a simple and fast microwave-assisted hydrothermal (MAH) under NaOH, KOH, and NH4OH mineralizers added to a cerium ammonium nitrate aqueous solution. The products were characterized by X-ray powder diffraction (XRD), field-emission scanning electron microscopy (FE-SEM), transmission electron microscopy (TEM), Fourier transformed-IR and Raman spectroscopies. Rietveld refinement reveals a cubic structure with a space group Fm3m while infrared data showed few traces of nitrates. Field emission scanning microcopy (FEG-SEM) revealed a homogeneous size distribution of nanometric CeO2 nanoparticles. The MAH process in KOH and NaOH showed most effective to dehydrate the adsorbed water and decrease the hydrogen bonding effect leaving a weakly agglomerated powder of hydrated ceria. TEM micrographs of CeO2 synthesized under MAH conditions reveal particles well-dispersed and homogeneously distributed. The MAH enabled cerium oxide to be synthesized at 100 °C for 8 min. © 2012 Elsevier B.V. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

CaSnO3 and SrSnO3 alkaline earth stannate thin films were prepared by chemical solution deposition using the polymeric precursor method on various single crystal substrates (R- and C-sapphire and 100-SrTiO3) at different temperatures. The films were characterized by X-ray diffraction (θ-2θ, ω- and φ-scans), field emission scanning electron microscopy, atomic force microscopy, micro-Raman spectroscopy and photoluminescence. Epitaxial SrSnO3 and CaSnO 3 thin films were obtained on SrTiO3 with a high crystalline quality. The long-range symmetry promoted a short-range disorder which led to photoluminescence in the epitaxial films. In contrast, the films deposited on sapphire exhibited a random polycrystalline growth with no meaningful emission regardless of the substrate orientation. The network modifier (Ca or Sr) and the substrate (sapphire or SrTiO3) influenced the crystallization process and/or the microstructure. Higher is the tilts of the SnO6 octahedra, as in CaSnO3, higher is the crystallization temperature, which changed also the nucleation/grain growth process. © 2012 Elsevier Inc. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Titanium and its alloys are widely used as biomaterials due to their mechanical, chemical and biological properties. To enhance the biocompatibility of titanium alloys, various surface treatments have been proposed. In particular, the formation of titanium oxide nanotubes layers has been extensively examined. According to the literature, it is possible to induce the growth of TiO2 on the surface of titanium, employing the aqueous anodizing electrolyte. This Ti-7.5Mo alloy was anodized in glycerol electrolytes containg 0.25 wt% of NH4F, with variations in time, voltage and calcinations temperature. After anodization, the sample surfaces were analyzed with a field emission scanning electron microscopy, DRX and contact angle measurements. It was possible to observe the formation of TiO2 on the surface and these findings represent a simple surface treatment for Ti alloys that has high potential for biomedical applications. Copyright © 2013 American Scientific Publishers. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The development of gas sensors with innovative designs and advanced functional materials has attracted considerable scientific interest given their potential for addressing important technological challenges. This work presents new insight towards the development of high-performance p-type semiconductor gas sensors. Gas sensor test devices, based on copper (II) oxide (CuO) with innovative and unique designs (urchin-like, fiber-like, and nanorods), are prepared by a microwave-assisted synthesis method. The crystalline composition, surface area, porosity, and morphological characteristics are studied by X-ray powder diffraction, nitrogen adsorption isotherms, field-emission scanning electron microscopy and high-resolution transmission electron microscopy. Gas sensor measurements, performed simultaneously on multiple samples, show that morphology can have a substantial influence on gas sensor performance. An assembly of urchin-like structures is found to be most effective for hydrogen detection in the range of parts-per-million at 200 °C with 300-fold larger response than the previously best reported values for semiconducting CuO hydrogen gas sensors. These results show that morphology plays an important role in the gas sensing performance of CuO and can be effectively applied in the further development of gas sensors based on p-type semiconductors. High-performance gas sensors based on CuO hierarchical morphologies with in situ gas sensor comparison are reported. Urchin-like morphologies with high hydrogen sensitivity and selectivity that show chemical and thermal stability and low temperature operation are analyzed. The role of morphological influences in p-type gas sensor materials is discussed. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.