891 resultados para Explicit Finite Element Modelling


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Glass reinforced plastic (GRP) is now an established material for the fabrication of sonar windows. Its good mechanical strength, light weight, resistance to corrosion and acoustic transparency, are all properties which fit it for this application. This thesis describes a study, undertaken at the Royal Naval Engineering College, Plymouth, into the mechanical behaviour of a circular cylindrical sonar panel. This particular type of panel would be used to cover a flank array sonar in a ship or submarine. The case considered is that of a panel with all of its edges mechanically clamped and subject to pressure loading on its convex surface. A comprehensive program of testing, to determine the orthotropic elastic properties of the laminated composite panel material is described, together with a series of pressure tests on 1:5 scale sonar panels. These pressure tests were carried out in a purpose designed test rig, using air pressure to provide simulated hydrostatic and hydrodynamic loading. Details of all instrumentation used in the experimental work are given in the thesis. The experimental results from the panel testing are compared with predictions of panel behaviour obtained from both the Galerkin solution of Flugge's cylindrical shell equations (orthotropic case), and finite element modelling of the panels using PAFEC. A variety of appropriate panel boundary conditions are considered in each case. A parametric study, intended to be of use as a preliminary design tool, and based on the above Galerkin solution, is also presented. This parametric study considers cases of boundary conditions, material properties, and panel geometry, outside of those investigated in the experimental work Final conclusions are drawn and recommendations made regarding possible improvements to the procedures for design, manufacture and fixing of sonar panels in the Royal Navy.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The goal of this research is to produce a system for powering medical implants to increase the lifetime of the implanted devices and reduce the battery size. The system consists of a number of elements – the piezoelectric material for generating power, the device design, the circuit for rectification and energy storage. The piezoelectric material is analysed and a process for producing a repeatable high quality piezoelectric material is described. A full width half maximum (FWHM) of the rocking curve X-Ray diffraction (XRD) scan of between ~1.5° to ~1.7° for test wafers was achieved. This is state of the art for AlN on silicon and means devices with good piezoelectric constants can be fabricated. Finite element modelling FEM) was used to design the structures for energy harvesting. The models developed in this work were established to have an accuracy better than 5% in terms of the difference between measured and modelled results. Devices made from this material were analysed for power harvesting ability as well as the effect that they have on the flow of liquid which is an important consideration for implantable devices. The FEM results are compared to experimental results from laser Doppler vibrometry (LDV), magnetic shaker and perfusion machine tests. The rectifying circuitry for the energy harvester was also investigated. The final solution uses multiple devices to provide the power to augment the battery and so this was a key feature to be considered. Many circuits were examined and a solution based on a fully autonomous circuit was advanced. This circuit was analysed for use with multiple low power inputs similar to the results from previous investigations into the energy harvesting devices. Polymer materials were also studied for use as a substitute for the piezoelectric material as well as the substrate because silicon is more brittle.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Previous studies about the strength of the lithosphere in the Iberia centre fail to resolve the depth of earthquakes because of the rheological uncertainties. Therefore, new contributions are considered (the crustal structure from a density model) and several parameters (tectonic regime, mantle rheology, strain rate) are checked in this paper to properly examine the role of lithospheric strength in the intraplate seismicity and the Cenozoic evolution. The strength distribution with depth, the integrated strength, the effective elastic thickness and the seismogenic thickness have been calculated by a finite element modelling of the lithosphere across the Central System mountain range and the bordering Duero and Madrid sedimentary basins. Only a dry mantle under strike-slip/extension and a strain rate of 10-15 s-1, or under extension and 10-16 s-1, causes a strong lithosphere. The integrated strength and the elastic thickness are lower in the mountain chain than in the basins. These anisotropies have been maintained since the Cenozoic and determine the mountain uplift and the biharmonic folding of the Iberian lithosphere during the Alpine deformations. The seismogenic thickness bounds the seismic activity in the upper–middle crust, and the decreasing crustal strength from the Duero Basin towards the Madrid Basin is related to a parallel increase in Plio–Quaternary deformations and seismicity. However, elasto–plastic modelling shows that current African–Eurasian convergence is resolved elastically or ductilely, which accounts for the low seismicity recorded in this region.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Methods employing continuum approximation in describing the deformation of layered materials possess a clear advantage over explicit models, However, the conventional implicit models based on the theory of anisotropic continua suffers from certain difficulties associated with interface slip and internal instabilities. These difficulties can be remedied by considering the bending stiffness of the layers. This implies the introduction of moment (couple) stresses and internal rotations, which leads to a Cosserat-type theory. In the present model, the behaviour of the layered material is assumed to be linearly elastic; the interfaces are assumed to be elastic perfectly plastic. Conditions of slip or no slip at the interfaces are detected by a Coulomb criterion with tension cut off at zero normal stress. The theory is valid for large deformation analysis. The model is incorporated into the finite element program AFENA and validated against analytical solutions of elementary buckling problems in layered medium. A problem associated with buckling of the roof and the floor of a rectangular excavation in jointed rock mass under high horizontal in situ stresses is considered as the main application of the theory. Copyright (C) 1999 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

El estudio desarrollado en este trabajo de tesis se centra en la modelización numérica de la fase de propagación de los deslizamientos rápidos de ladera a través del método sin malla Smoothed Particle Hydrodynamics (SPH). Este método tiene la gran ventaja de permitir el análisis de problemas de grandes deformaciones evitando operaciones costosas de remallado como en el caso de métodos numéricos con mallas tal como el método de los Elementos Finitos. En esta tesis, particular atención viene dada al rol que la reología y la presión de poros desempeñan durante estos eventos. El modelo matemático utilizado se basa en la formulación de Biot-Zienkiewicz v - pw, que representa el comportamiento, expresado en términos de velocidad del esqueleto sólido y presiones de poros, de la mezcla de partículas sólidas en un medio saturado. Las ecuaciones que gobiernan el problema son: • la ecuación de balance de masa de la fase del fluido intersticial, • la ecuación de balance de momento de la fase del fluido intersticial y de la mezcla, • la ecuación constitutiva y • una ecuación cinemática. Debido a sus propiedades geométricas, los deslizamientos de ladera se caracterizan por tener una profundidad muy pequeña frente a su longitud y a su anchura, y, consecuentemente, el modelo matemático mencionado anteriormente se puede simplificar integrando en profundidad las ecuaciones, pasando de un modelo 3D a 2D, el cual presenta una combinación excelente de precisión, sencillez y costes computacionales. El modelo propuesto en este trabajo se diferencia de los modelos integrados en profundidad existentes por incorporar un ulterior modelo capaz de proveer información sobre la presión del fluido intersticial a cada paso computacional de la propagación del deslizamiento. En una manera muy eficaz, la evolución de los perfiles de la presión de poros está numéricamente resuelta a través de un esquema explicito de Diferencias Finitas a cada nodo SPH. Este nuevo enfoque es capaz de tener en cuenta la variación de presión de poros debida a cambios de altura, de consolidación vertical o de cambios en las tensiones totales. Con respecto al comportamiento constitutivo, uno de los problemas principales al modelizar numéricamente deslizamientos rápidos de ladera está en la dificultad de simular con la misma ley constitutiva o reológica la transición de la fase de iniciación, donde el material se comporta como un sólido, a la fase de propagación donde el material se comporta como un fluido. En este trabajo de tesis, se propone un nuevo modelo reológico basado en el modelo viscoplástico de Perzyna, pensando a la viscoplasticidad como a la llave para poder simular tanto la fase de iniciación como la de propagación con el mismo modelo constitutivo. Con el fin de validar el modelo matemático y numérico se reproducen tanto ejemplos de referencia con solución analítica como experimentos de laboratorio. Finalmente, el modelo se aplica a casos reales, con especial atención al caso del deslizamiento de 1966 en Aberfan, mostrando como los resultados obtenidos simulan con éxito estos tipos de riesgos naturales. The study developed in this thesis focuses on the modelling of landslides propagation with the Smoothed Particle Hydrodynamics (SPH) meshless method which has the great advantage of allowing to deal with large deformation problems by avoiding expensive remeshing operations as happens for mesh methods such as, for example, the Finite Element Method. In this thesis, special attention is given to the role played by rheology and pore water pressure during these natural hazards. The mathematical framework used is based on the v - pw Biot-Zienkiewicz formulation, which represents the behaviour, formulated in terms of soil skeleton velocity and pore water pressure, of the mixture of solid particles and pore water in a saturated media. The governing equations are: • the mass balance equation for the pore water phase, • the momentum balance equation for the pore water phase and the mixture, • the constitutive equation and • a kinematic equation. Landslides, due to their shape and geometrical properties, have small depths in comparison with their length or width, therefore, the mathematical model aforementioned can then be simplified by depth integrating the equations, switching from a 3D to a 2D model, which presents an excellent combination of accuracy, computational costs and simplicity. The proposed model differs from previous depth integrated models by including a sub-model able to provide information on pore water pressure profiles at each computational step of the landslide's propagation. In an effective way, the evolution of the pore water pressure profiles is numerically solved through a set of 1D Finite Differences explicit scheme at each SPH node. This new approach is able to take into account the variation of the pore water pressure due to changes of height, vertical consolidation or changes of total stress. Concerning the constitutive behaviour, one of the main issues when modelling fast landslides is the difficulty to simulate with the same constitutive or rheological model the transition from the triggering phase, where the landslide behaves like a solid, to the propagation phase, where the landslide behaves in a fluid-like manner. In this work thesis, a new rheological model is proposed, based on the Perzyna viscoplastic model, thinking of viscoplasticity as the key to close the gap between the triggering and the propagation phase. In order to validate the mathematical model and the numerical approach, benchmarks and laboratory experiments are reproduced and compared to analytical solutions when possible. Finally, applications to real cases are studied, with particular attention paid to the Aberfan flowslide of 1966, showing how the mathematical model accurately and successfully simulate these kind of natural hazards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Shot peening is a cold-working mechanical process in which a shot stream is propelled against a component surface. Its purpose is to introduce compressive residual stresses on component surfaces for increasing the fatigue resistance. This process is widely applied in springs due to the cyclical loads requirements. This paper presents a numerical modelling of shot peening process using the finite element method. The results are compared with experimental measurements of the residual stresses, obtained by the X-rays diffraction technique, in leaf springs submitted to this process. Furthermore, the results are compared with empirical and numerical correlations developed by other authors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A study on the use of artificial intelligence (AI) techniques for the modelling and subsequent control of an electric resistance spot welding process (ERSW) is presented. The ERSW process is characterized by the coupling of thermal, electrical, mechanical, and metallurgical phenomena. For this reason, early attempts to model it using computational methods established as the methods of finite differences, finite element, and finite volumes, ask for simplifications that lead the model obtained far from reality or very costly in terms of computational costs, to be used in a real-time control system. In this sense, the authors have developed an ERSW controller that uses fuzzy logic to adjust the energy transferred to the weld nugget. The proposed control strategies differ in the speed with which it reaches convergence. Moreover, their application for a quality control of spot weld through artificial neural networks (ANN) is discussed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Numerical methods ave used to solve double diffusion driven reactive flow transport problems in deformable fluid-saturated porous media. in particular, thp temperature dependent reaction rate in the non-equilibrium chemical reactions is considered. A general numerical solution method, which is a combination of the finite difference method in FLAG and the finite element method in FIDAP, to solve the fully coupled problem involving material deformation, pore-fluid flow, heat transfer and species transport/chemical reactions in deformable fluid-saturated porous media has been developed The coupled problem is divided into two subproblems which are solved interactively until the convergence requirement is met. Owing to the approximate nature of the numerical method, if is essential to justify the numerical solutions through some kind of theoretical analysis. This has been highlighted in this paper The related numerical results, which are justified by the theoretical analysis, have demonstrated that the proposed solution method is useful for and applicable to a wide range of fully coupled problems in the field of science and engineering.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The influence of initial perturbation geometry and material propel-ties on final fold geometry has been investigated using finite-difference (FLAC) and finite-element (MARC) numerical models. Previous studies using these two different codes reported very different folding behaviour although the material properties, boundary conditions and initial perturbation geometries were similar. The current results establish that the discrepancy was not due to the different computer codes but due to the different strain rates employed in the two previous studies (i.e. 10(-6) s(-1) in the FLAC models and 10(-14) s(-1) in the MARC models). As a result, different parts of the elasto-viscous rheological field were bring investigated. For the same material properties, strain rate and boundary conditions, the present results using the two different codes are consistent. A transition in Folding behaviour, from a situation where the geometry of initial perturbation determines final fold shape to a situation where material properties control the final geometry, is produced using both models. This transition takes place with increasing strain rate, decreasing elastic moduli or increasing viscosity (reflecting in each case the increasing influence of the elastic component in the Maxwell elastoviscous rheology). The transition described here is mechanically feasible but is associated with very high stresses in the competent layer (on the order of GPa), which is improbable under natural conditions. (C) 2000 Elsevier Science Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The solidification of intruded magma in porous rocks can result in the following two consequences: (1) the heat release due to the solidification of the interface between the rock and intruded magma and (2) the mass release of the volatile fluids in the region where the intruded magma is solidified into the rock. Traditionally, the intruded magma solidification problem is treated as a moving interface (i.e. the solidification interface between the rock and intruded magma) problem to consider these consequences in conventional numerical methods. This paper presents an alternative new approach to simulate thermal and chemical consequences/effects of magma intrusion in geological systems, which are composed of porous rocks. In the proposed new approach and algorithm, the original magma solidification problem with a moving boundary between the rock and intruded magma is transformed into a new problem without the moving boundary but with the proposed mass source and physically equivalent heat source. The major advantage in using the proposed equivalent algorithm is that a fixed mesh of finite elements with a variable integration time-step can be employed to simulate the consequences and effects of the intruded magma solidification using the conventional finite element method. The correctness and usefulness of the proposed equivalent algorithm have been demonstrated by a benchmark magma solidification problem. Copyright (c) 2005 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purlin-sheeting systems used for roofs and walls commonly take the form of cold-formed channel or zed section purlins, screw-connected to corrugated sheeting. These purlin-sheeting systems have been the subject of numerous theoretical and experimental investigations over the past three decades, but the complexity of the systems has led to great difficulty in developing a sound and general model. This paper presents a non-linear elasto-plastic finite element model, capable of predicting the behaviour of purlin-sheeting systems without the need for either experimental input or over simplifying assumptions. The model incorporates both the sheeting and the purlin, and is able to account for cross-sectional distortion of the purlin, the flexural and membrane restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The validity of the model is shown by its good correlation with experimental results. A simplified version of this model, which is more suitable for use in a design environment, is presented in a companion paper. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A number of theoretical and experimental investigations have been made into the nature of purlin-sheeting systems over the past 30 years. These systems commonly consist of cold-formed zed or channel section purlins, connected to corrugated sheeting. They have proven difficult to model due to the complexity of both the purlin deformation and the restraint provided to the purlin by the sheeting. Part 1 of this paper presented a non-linear elasto plastic finite element model which, by incorporating both the purlin and the sheeting in the analysis, allowed the interaction between the two components of the system to be modelled. This paper presents a simplified version of the first model which has considerably decreased requirements in terms of computer memory, running time and data preparation. The Simplified Model includes only the purlin but allows for the sheeting's shear and rotational restraints by modelling these effects as springs located at the purlin-sheeting connections. Two accompanying programs determine the stiffness of these springs numerically. As in the Full Model, the Simplified Model is able to account for the cross-sectional distortion of the purlin, the shear and rotational restraining effects of the sheeting, and failure of the purlin by local buckling or yielding. The model requires no experimental or empirical input and its validity is shown by its goon con elation with experimental results. (C) 1997 Elsevier Science Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Most finite element packages use the Newmark algorithm for time integration of structural dynamics. Various algorithms have been proposed to better optimize the high frequency dissipation of this algorithm. Hulbert and Chung proposed both implicit and explicit forms of the generalized alpha method. The algorithms optimize high frequency dissipation effectively, and despite recent work on algorithms that possess momentum conserving/energy dissipative properties in a non-linear context, the generalized alpha method remains an efficient way to solve many problems, especially with adaptive timestep control. However, the implicit and explicit algorithms use incompatible parameter sets and cannot be used together in a spatial partition, whereas this can be done for the Newmark algorithm, as Hughes and Liu demonstrated, and for the HHT-alpha algorithm developed from it. The present paper shows that the explicit generalized alpha method can be rewritten so that it becomes compatible with the implicit form. All four algorithmic parameters can be matched between the explicit and implicit forms. An element interface between implicit and explicit partitions can then be used, analogous to that devised by Hughes and Liu to extend the Newmark method. The stability of the explicit/implicit algorithm is examined in a linear context and found to exceed that of the explicit partition. The element partition is significantly less dissipative of intermediate frequencies than one using the HHT-alpha method. The explicit algorithm can also be rewritten so that the discrete equation of motion evaluates forces from displacements and velocities found at the predicted mid-point of a cycle. Copyright (C) 2003 John Wiley Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The effects of the Miocene through Present compression in the Tagus Abyssal Plain are mapped using the most up to date available to scientific community multi-channel seismic reflection and refraction data. Correlation of the rift basin fault pattern with the deep crustal structure is presented along seismic line IAM-5. Four structural domains were recognized. In the oceanic realm mild deformation concentrates in Domain I adjacent to the Tore-Madeira Rise. Domain 2 is characterized by the absence of shortening structures, except near the ocean-continent transition (OCT), implying that Miocene deformation did not propagate into the Abyssal Plain, In Domain 3 we distinguish three sub-domains: Sub-domain 3A which coincides with the OCT, Sub-domain 3B which is a highly deformed adjacent continental segment, and Sub-domain 3C. The Miocene tectonic inversion is mainly accommodated in Domain 3 by oceanwards directed thrusting at the ocean-continent transition and continentwards on the continental slope. Domain 4 corresponds to the non-rifted continental margin where only minor extensional and shortening deformation structures are observed. Finite element numerical models address the response of the various domains to the Miocene compression, emphasizing the long-wavelength differential vertical movements and the role of possible rheologic contrasts. The concentration of the Miocene deformation in the transitional zone (TC), which is the addition of Sub-domain 3A and part of 3B, is a result of two main factors: (1) focusing of compression in an already stressed region due to plate curvature and sediment loading; and (2) theological weakening. We estimate that the frictional strength in the TC is reduced in 30% relative to the surrounding regions. A model of compressive deformation propagation by means of horizontal impingement of the middle continental crust rift wedge and horizontal shearing on serpentinized mantle in the oceanic realm is presented. This model is consistent with both the geological interpretation of seismic data and the results of numerical modelling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Adhesively-bonded joints are extensively used in several fields of engineering. Cohesive Zone Models (CZM) have been used for the strength prediction of adhesive joints, as an add-in to Finite Element (FE) analyses that allows simulation of damage growth, by consideration of energetic principles. A useful feature of CZM is that different shapes can be developed for the cohesive laws, depending on the nature of the material or interface to be simulated, allowing an accurate strength prediction. This work studies the influence of the CZM shape (triangular, exponential or trapezoidal) used to model a thin adhesive layer in single-lap adhesive joints, for an estimation of its influence on the strength prediction under different material conditions. By performing this study, guidelines are provided on the possibility to use a CZM shape that may not be the most suited for a particular adhesive, but that may be more straightforward to use/implement and have less convergence problems (e.g. triangular shaped CZM), thus attaining the solution faster. The overall results showed that joints bonded with ductile adhesives are highly influenced by the CZM shape, and that the trapezoidal shape fits best the experimental data. Moreover, the smaller is the overlap length (LO), the greater is the influence of the CZM shape. On the other hand, the influence of the CZM shape can be neglected when using brittle adhesives, without compromising too much the accuracy of the strength predictions.