972 resultados para Evolutionary structural optimization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Nucleoside diphosphate kinases play a crucial role in the purine-salvage pathway of trypanosomatid protozoa and have been found in the secretome of Leishmania sp., suggesting a function related to host-cell integrity for the benefit of the parasite. Due to their importance for housekeeping functions in the parasite and by prolonging the life of host cells in infection, they become an attractive target for drug discovery and design. In this work, we describe the first structural characterization of nucleoside diphosphate kinases b from trypanosomatid parasites (tNDKbs) providing insights into their oligomerization, stability and structural determinants for nucleotide binding. Crystallographic studies of LmNDKb when complexed with phosphate, AMP and ADP showed that the crucial hydrogen-bonding residues involved in the nucleotide interaction are fully conserved in tNDKbs. Depending on the nature of the ligand, the nucleotide-binding pocket undergoes conformational changes, which leads to different cavity volumes. SAXS experiments showed that tNDKbs, like other eukaryotic NDKs, form a hexamer in solution and their oligomeric state does not rely on the presence of nucleotides or mimetics. Fluorescence-based thermal-shift assays demonstrated slightly higher stability of tNDKbs compared to human NDKb (HsNDKb), which is in agreement with the fact that tNDKbs are secreted and subjected to variations of temperature in the host cells during infection and disease development. Moreover, tNDKbs were stabilized upon nucleotide binding, whereas HsNDKb was not influenced. Contrasts on the surface electrostatic potential around the nucleotide-binding pocket might be a determinant for nucleotide affinity and protein stability differentiation. All these together demonstrated the molecular adaptation of parasite NDKbs in order to exert their biological functions intra-parasite and when secreted by regulating ATP levels of host cells.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The structural determinants of myotoxicity of bothropstoxin-I (BthTX-I), a Lys49 phospholipase A(2) from Bothrops jararacussu venom, were studied by measuring the resting membrane potential in the mouse phrenic nerve-diaphragm preparation. This method proved to be around 100-fold more sensitive than the creatine kinase release assay, and was used to evaluate a total of 31 site-directed BthTX-I alanine scanning mutants. Mutants that reduced the resting membrane potential were located in a surface patch defined by residues in the C-terminal loop (residues 115-129), positions 37-39 in the membrane interfacial recognition surface (Y46 and K54), and residue K93. These results expand the known structural determinants of the biological activity as evaluated by previous creatine kinase release experiments. Furthermore, a strong correlation is observed between the structural determinants of sarcolemma depolarization and calcium-independent disruption of liposome membranes, suggesting that a common mechanism of action underlies the permeabilization of the biological and model membranes. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite extensive research in the last 150 years, the regional tectonic reconstruction of the Western Alps has remained controversial. The curved orogenic belt consists of several ribbon-like continental terranes (Sesia/Austroalpine, Internal Crystalline Massifs, Brianconnais), which are separated by two or more ophiolitic sutures (Piemonte, Valais, Antrona?, Lanzo/ Canavese?). High-pressure (HP) metamorphism of each terrane occurred during distinct orogenic episodes: at similar to65 Ma in the Sesia/Austroalpine, at similar to45 Ma in the Piemonte zone and at similar to35 Ma in the Internal Crystalline Massifs. It is suggested that these events reflect individual accretionary episodes, which together with kinematic indicators and the speed and direction of plate motions, provide constraints for the discussed reconstruction model. The model involves a prolonged orogenic history that took place during relative convergence of Europe and Adria (here considered as a promontory of the African plate). The first accretionary event involved the Sesia/Austroalpine terrane. Final closure of the Piemonte Ocean occurred during the Eocene (similar to45 Ma) and involved ultra-high-pressure (UHP) metamorphism of the Piemonte oceanic crust. Incorporation of the Brianconnais terrane in the accretionary wedge occurred thereafter, possibly during or after subduction of the Valais Ocean in the late Eocene (45-35 Ma). This subduction was terminated at ca. 35 Ma, when the Internal Crystalline Massifs (i.e. the assumed internal parts of the Brianconnais terrane) were buried into great depths and underwent HP and UHP metamorphism. (C) 2004 Elsevier B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aminoacyl-transfer RNA (tRNA) synthetases (aaRS) are key players in translation and act early in protein synthesis by mediating the attachment of amino acids to their cognate tRNA molecules. In plants, protein synthesis may occur in three subcellular compartments (cytosol, mitochondria, and chloroplasts), which requires multiple versions of the protein to be correctly delivered to its proper destination. The organellar aaRS are nuclear encoded and equipped with targeting information at the N-terminal sequence, which enables them to be specifically translocated to their final location. Most of the aaRS families present organellar proteins that are dual targeted to mitochondria and chloroplasts. Here, we examine the dual targeting behavior of aaRS from an evolutionary perspective. Our results show that Arabidopsis thaliana aaRS sequences are a result of a horizontal gene transfer event from bacteria. However, there is no evident bias indicating one single ancestor (Cyanobacteria or Proteobacteria). The dual-targeted aaRS phylogenetic relationship was characterized into two different categories (paralogs and homologs) depending on the state recovered for both dual-targeted and cytosolic proteins. Taken together, our results suggest that the dual-targeted condition is a gain-of-function derived from gene duplication. Selection may have maintained the original function in at least one of the copies as the additional copies diverged.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

To better comprehend the structural and biochemical underpinnings of ion uptake across the gills of true freshwater crabs, we performed an ultrastructural, ultracytochemical and morphometric investigation, and kinetically characterized the Na(+), K(+)-ATPase, in posterior gill lamellae of Dilocarcinus pagei. Ultrastructurally, the lamellar epithelia are markedly asymmetrical: the thick, mushroom-shaped, proximal ionocytes contain elongate mitochondria (41% cell volume) associated with numerous (approximate to 14 mu m(2) membrane per mu m(3) cytoplasm), deep invaginations that house the Na(+), K(+)-ATPase, revealed ultracytochemically. Their apical surface is amplified (7.5 mu m(2) mu m(-2)) by stubby evaginations whose bases adjoin mitochondria below the subcuticular space. The apical membrane of the thin, distal ionocytes shows few evaginations (1.6 mu m(2) mu m(-2)), each surrounding a mitochondrion, abundant in the cytoplasm below the subcuticular space; basolateral invaginations and mitochondria are few. Fine basal cytoplasmic bridges project across the hemolymph space, penetrating into the thick ionocytes, suggesting ion movement between the epithelia. Microsomal Na(+), K(+)-ATPase specific activity resembles marine crabs but is approximate to 5-fold less than in species from fluctuating salinities, and freshwater shrimps, suggesting ion loss compensation by strategies other than Na(+) uptake. Enzyme apparent K(+) affinity attains 14-fold that of marine crabs, emphasizing the relevance of elevated K(+) affinity to the conquest of fresh water. Western blotting and biphasic ouabain inhibition disclose two alpha-subunit isoforms comprising distinct functional isoenzymes. While enzyme activity is not synergistically stimulated by NH(4)(+) and K(+), each increases affinity for the other, possibly assuring appropriate intracellular K(+) concentrations. These findings reveal specific structural and biochemical adaptations that may have allowed the establishment of the Brachyura in fresh water. J. Exp. Zool. 313A:508-523, 2010. (C) 2010 Wiley-Liss, Inc.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The pocilloporin Rtms5 and an engineered variant Rtms5(H146S) undergo distinct color transitions (from blue to red to yellow to colorless) in a pH-dependent manner. pK(a) values of 4.1 and 3.2 were determined for the blue (absorption lambda(max), 590 nm) to yellow (absorption lambda(max), similar to 453 nm) transitions of Rtms5 and Rtms5H(146). The pK(a) for the blue-yellow transition of Rtms5H(146S) increased by 1.4 U in the presence of 0.1 M KI, whereas the pK(a) for the same transition of Rtms5 was relatively insensitive to added halides. To understand the structural basis for these observations, we have determined to 2.0 A resolution the crystal structure of a yellow form of Rtms5(H146S) at pH 3.5 in the presence of iodide. Iodide was found occupying a pocket in the structure with a pH of 3.5, forming van der Waals contacts with the tyrosyl moiety of the chromophore. Elsewhere, it was determined that this pocket is occupied by a water molecule in the Rtms5(H141S) structure (pH 8.0) and by the side chain of histidine 146 in the wild-type Rtms5 structure. Collectively, our data provide an explanation for the observed linkage between color transitions for Rtms5(H146S) and binding to halides.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Electrical impedance tomography is a technique to estimate the impedance distribution within a domain, based on measurements on its boundary. In other words, given the mathematical model of the domain, its geometry and boundary conditions, a nonlinear inverse problem of estimating the electric impedance distribution can be solved. Several impedance estimation algorithms have been proposed to solve this problem. In this paper, we present a three-dimensional algorithm, based on the topology optimization method, as an alternative. A sequence of linear programming problems, allowing for constraints, is solved utilizing this method. In each iteration, the finite element method provides the electric potential field within the model of the domain. An electrode model is also proposed (thus, increasing the accuracy of the finite element results). The algorithm is tested using numerically simulated data and also experimental data, and absolute resistivity values are obtained. These results, corresponding to phantoms with two different conductive materials, exhibit relatively well-defined boundaries between them, and show that this is a practical and potentially useful technique to be applied to monitor lung aeration, including the possibility of imaging a pneumothorax.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The myosin-associated giant protein kinases twitchin and titin are composed predominantly of fibronectin- and immunoglobulin-like modules, We report the crystal structures of two autoinhibited twitchin kinase fragments, one from Aplysia and a larger fragment from Caenorhabditis elegans containing an additional C-terminal immunoglobulin-like domain, The structure of the longer fragment shoes that the immunoglobulin domain contacts the protein kinase domain on the opposite side from the catalytic cleft, laterally exposing potential myosin binding residues, Together, the structures reveal the cooperative interactions between the autoregulatory region and the residues from the catalytic domain involved in protein substrate binding, ATP binding, catalysis and the activation loop, and explain the differences between the observed autoinhibitory mechanism and the one found in the structure of calmodulin-dependent kinase I.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An important consideration in the development of mathematical models for dynamic simulation, is the identification of the appropriate mathematical structure. By building models with an efficient structure which is devoid of redundancy, it is possible to create simple, accurate and functional models. This leads not only to efficient simulation, but to a deeper understanding of the important dynamic relationships within the process. In this paper, a method is proposed for systematic model development for startup and shutdown simulation which is based on the identification of the essential process structure. The key tool in this analysis is the method of nonlinear perturbations for structural identification and model reduction. Starting from a detailed mathematical process description both singular and regular structural perturbations are detected. These techniques are then used to give insight into the system structure and where appropriate to eliminate superfluous model equations or reduce them to other forms. This process retains the ability to interpret the reduced order model in terms of the physico-chemical phenomena. Using this model reduction technique it is possible to attribute observable dynamics to particular unit operations within the process. This relationship then highlights the unit operations which must be accurately modelled in order to develop a robust plant model. The technique generates detailed insight into the dynamic structure of the models providing a basis for system re-design and dynamic analysis. The technique is illustrated on the modelling for an evaporator startup. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this second paper, the three structural measures which have been developed are used in the modelling of a three stage centrifugal synthesis gas compressor. The goal of this case study is to determine the essential mathematical structure which must be incorporated into the compressor model to accurately model the shutdown of this system. A simple, accurate and functional model of the system is created via three structural measures. It was found that the model can be correctly reduced into its basic modes and that the order of the differential system can be reduced from 51(st) to 20(th). Of the 31 differential equational 21 reduce to algebraic relations, 8 become constants and 2 can be deleted thereby increasing the algebraic set from 70 to 91 equations. An interpretation is also obtained as to which physical phenomena are dominating the dynamics of the compressor add whether the compressor will enter surge during the shutdown. Comparisons of the reduced model performance against the full model are given, showing the accuracy and applicability of the approach. Copyright (C) 1996 Elsevier Science Ltd

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Evidence that combined glucosamine sulfate and chondroitin sulfate (Gluchon) or isolated glucosamine (Glu) modifies joint damage in osteoarthritis (OA) is still lacking. We studied joint pain and cartilage damage using the anterior cruciate ligament transection (ACLT) model. Wistar rats were subjected to ACLT of the right knee ( OA) or sham operation. Groups received either Glu (500 mg/kg), Gluchon (500 mg/kg glucosamine +400 mg/kg chondroitin) or vehicle (non-treated-NT) per os starting 7 days prior to ACLT until sacrifice at 70 days. Joint pain was evaluated daily using the rat-knee joint articular incapacitation test. Structural joint damage was assessed using histology and biochemistry as the chondroitin sulfate ( CS) content of cartilage by densitometry (microgram per milligram dried cartilage), comparing to standard CS. The molar weight (Mw) of the CS samples, used as a qualitative biochemical parameter, was obtained by comparing their relative mobility on a polyacrylamide gel electrophoresis to standard CS. Gluchon, but not Glu, significantly reduced joint pain (P<0.05) compared to NT. There was an increase in CS content in the OA group (77.7 +/- 8.3 mu g/mg) compared to sham (53.5 +/- 11.2 mu g/mg) (P<0.05). The CS from OA samples had higher Mw (4:62 +/- 0:24 x 10(4) g/mol) compared to sham (4:18 +/- 0:19 x 10(4) g/mol) (P<0.05). Gluchon administration significantly reversed both the increases in CS content (54.4 +/- 12.1 mu g/mg) and Mw (4:18 +/- 0:2 x 104 g/mol) as compared to NT. Isolated Glu decreased CS content though not reaching statistical significance. Cartilage histology alterations were also significantly prevented by Gluchon administration. Gluchon provides clinical (analgesia) and structural benefits in the ACLT model. This is the first demonstration that biochemical alterations occurring in parallel to histological damage in OA are prevented by Gluchon administration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The syntheses and characterisation of the new macrocyclic hexaamine trans-(5(S),7(S),12(R),14(R)-tetramethyl)-1,4,8,11-tetraazacyclotetradecane-6,13-diamine (L-6) and its Co-III complex are reported. The X-ray crystal structural analyses of [CoL6]Cl-2(ClO4) [monoclinic, space group C2/c, a = 16.468(3) Angstrom, b = 9.7156(7) Angstrom, c = 15.070(3) Angstrom, beta = 119.431(8)degrees, Z = 4] and the closely related cis-diamino-substituted macrocyclic complex [CoL2](ClO4)(3) . 2H(2)O (L-2 = cis-6,13-dimethyl-1,4,8,11-tetraazacyclotetradecane-6,13-diamine) [orthorhombic, space group Pna2(1), a = 16.8220(8) Angstrom, b = 10.416(2) Angstrom, c = 14.219(3) Angstrom, Z = 4] reveal significant variations in the observed Co-N bond lengths and coordination geometries, which may be attributed to the trans or cis disposition of the pendent primary amines. The Co-III/II self-exchange electron transfer rate constants for these and other closely related hexaamines have been determined, and variations of some 2 orders of magnitude are found between pairs of trans and cis isomeric Co-III complexes.