925 resultados para Evolutionary computation
Resumo:
To ensure quality of machined products at minimum machining costs and maximum machining effectiveness, it is very important to select optimum parameters when metal cutting machine tools are employed. Traditionally, the experience of the operator plays a major role in the selection of optimum metal cutting conditions. However, attaining optimum values each time by even a skilled operator is difficult. The non-linear nature of the machining process has compelled engineers to search for more effective methods to attain optimization. The design objective preceding most engineering design activities is simply to minimize the cost of production or to maximize the production efficiency. The main aim of research work reported here is to build robust optimization algorithms by exploiting ideas that nature has to offer from its backyard and using it to solve real world optimization problems in manufacturing processes.In this thesis, after conducting an exhaustive literature review, several optimization techniques used in various manufacturing processes have been identified. The selection of optimal cutting parameters, like depth of cut, feed and speed is a very important issue for every machining process. Experiments have been designed using Taguchi technique and dry turning of SS420 has been performed on Kirlosker turn master 35 lathe. Analysis using S/N and ANOVA were performed to find the optimum level and percentage of contribution of each parameter. By using S/N analysis the optimum machining parameters from the experimentation is obtained.Optimization algorithms begin with one or more design solutions supplied by the user and then iteratively check new design solutions, relative search spaces in order to achieve the true optimum solution. A mathematical model has been developed using response surface analysis for surface roughness and the model was validated using published results from literature.Methodologies in optimization such as Simulated annealing (SA), Particle Swarm Optimization (PSO), Conventional Genetic Algorithm (CGA) and Improved Genetic Algorithm (IGA) are applied to optimize machining parameters while dry turning of SS420 material. All the above algorithms were tested for their efficiency, robustness and accuracy and observe how they often outperform conventional optimization method applied to difficult real world problems. The SA, PSO, CGA and IGA codes were developed using MATLAB. For each evolutionary algorithmic method, optimum cutting conditions are provided to achieve better surface finish.The computational results using SA clearly demonstrated that the proposed solution procedure is quite capable in solving such complicated problems effectively and efficiently. Particle Swarm Optimization (PSO) is a relatively recent heuristic search method whose mechanics are inspired by the swarming or collaborative behavior of biological populations. From the results it has been observed that PSO provides better results and also more computationally efficient.Based on the results obtained using CGA and IGA for the optimization of machining process, the proposed IGA provides better results than the conventional GA. The improved genetic algorithm incorporating a stochastic crossover technique and an artificial initial population scheme is developed to provide a faster search mechanism. Finally, a comparison among these algorithms were made for the specific example of dry turning of SS 420 material and arriving at optimum machining parameters of feed, cutting speed, depth of cut and tool nose radius for minimum surface roughness as the criterion. To summarize, the research work fills in conspicuous gaps between research prototypes and industry requirements, by simulating evolutionary procedures seen in nature that optimize its own systems.
Resumo:
One major component of power system operation is generation scheduling. The objective of the work is to develop efficient control strategies to the power scheduling problems through Reinforcement Learning approaches. The three important active power scheduling problems are Unit Commitment, Economic Dispatch and Automatic Generation Control. Numerical solution methods proposed for solution of power scheduling are insufficient in handling large and complex systems. Soft Computing methods like Simulated Annealing, Evolutionary Programming etc., are efficient in handling complex cost functions, but find limitation in handling stochastic data existing in a practical system. Also the learning steps are to be repeated for each load demand which increases the computation time.Reinforcement Learning (RL) is a method of learning through interactions with environment. The main advantage of this approach is it does not require a precise mathematical formulation. It can learn either by interacting with the environment or interacting with a simulation model. Several optimization and control problems have been solved through Reinforcement Learning approach. The application of Reinforcement Learning in the field of Power system has been a few. The objective is to introduce and extend Reinforcement Learning approaches for the active power scheduling problems in an implementable manner. The main objectives can be enumerated as:(i) Evolve Reinforcement Learning based solutions to the Unit Commitment Problem.(ii) Find suitable solution strategies through Reinforcement Learning approach for Economic Dispatch. (iii) Extend the Reinforcement Learning solution to Automatic Generation Control with a different perspective. (iv) Check the suitability of the scheduling solutions to one of the existing power systems.First part of the thesis is concerned with the Reinforcement Learning approach to Unit Commitment problem. Unit Commitment Problem is formulated as a multi stage decision process. Q learning solution is developed to obtain the optimwn commitment schedule. Method of state aggregation is used to formulate an efficient solution considering the minimwn up time I down time constraints. The performance of the algorithms are evaluated for different systems and compared with other stochastic methods like Genetic Algorithm.Second stage of the work is concerned with solving Economic Dispatch problem. A simple and straight forward decision making strategy is first proposed in the Learning Automata algorithm. Then to solve the scheduling task of systems with large number of generating units, the problem is formulated as a multi stage decision making task. The solution obtained is extended in order to incorporate the transmission losses in the system. To make the Reinforcement Learning solution more efficient and to handle continuous state space, a fimction approximation strategy is proposed. The performance of the developed algorithms are tested for several standard test cases. Proposed method is compared with other recent methods like Partition Approach Algorithm, Simulated Annealing etc.As the final step of implementing the active power control loops in power system, Automatic Generation Control is also taken into consideration.Reinforcement Learning has already been applied to solve Automatic Generation Control loop. The RL solution is extended to take up the approach of common frequency for all the interconnected areas, more similar to practical systems. Performance of the RL controller is also compared with that of the conventional integral controller.In order to prove the suitability of the proposed methods to practical systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for case study. The perfonnance of the Reinforcement Learning solution is found to be better than the other existing methods, which provide the promising step towards RL based control schemes for practical power industry.Reinforcement Learning is applied to solve the scheduling problems in the power industry and found to give satisfactory perfonnance. Proposed solution provides a scope for getting more profit as the economic schedule is obtained instantaneously. Since Reinforcement Learning method can take the stochastic cost data obtained time to time from a plant, it gives an implementable method. As a further step, with suitable methods to interface with on line data, economic scheduling can be achieved instantaneously in a generation control center. Also power scheduling of systems with different sources such as hydro, thermal etc. can be looked into and Reinforcement Learning solutions can be achieved.
Resumo:
This thesis is an outcome of the investigations carried out on the development of an Artificial Neural Network (ANN) model to implement 2-D DFT at high speed. A new definition of 2-D DFT relation is presented. This new definition enables DFT computation organized in stages involving only real addition except at the final stage of computation. The number of stages is always fixed at 4. Two different strategies are proposed. 1) A visual representation of 2-D DFT coefficients. 2) A neural network approach. The visual representation scheme can be used to compute, analyze and manipulate 2D signals such as images in the frequency domain in terms of symbols derived from 2x2 DFT. This, in turn, can be represented in terms of real data. This approach can help analyze signals in the frequency domain even without computing the DFT coefficients. A hierarchical neural network model is developed to implement 2-D DFT. Presently, this model is capable of implementing 2-D DFT for a particular order N such that ((N))4 = 2. The model can be developed into one that can implement the 2-D DFT for any order N upto a set maximum limited by the hardware constraints. The reported method shows a potential in implementing the 2-D DF T in hardware as a VLSI / ASIC
Resumo:
The work is intended to study the following important aspects of document image processing and develop new methods. (1) Segmentation ofdocument images using adaptive interval valued neuro-fuzzy method. (2) Improving the segmentation procedure using Simulated Annealing technique. (3) Development of optimized compression algorithms using Genetic Algorithm and parallel Genetic Algorithm (4) Feature extraction of document images (5) Development of IV fuzzy rules. This work also helps for feature extraction and foreground and background identification. The proposed work incorporates Evolutionary and hybrid methods for segmentation and compression of document images. A study of different neural networks used in image processing, the study of developments in the area of fuzzy logic etc is carried out in this work
Resumo:
Antimicrobial peptides (AMPs) are humoral innate immune components of fishes that provide protection against pathogenic infections. Histone derived antimicrobial peptides are reported to actively participate in the immune defenses of fishes. Present study deals with identification of putative antimicrobial sequences from the histone H2A of sicklefin chimaera, Neoharriotta pinnata. A 52 amino acid residue termed Harriottin-1, a 40 amino acid Harriottin-2, and a 21 mer Harriottin-3 were identified to possess antimicrobial sequence motif. Physicochemical properties andmolecular structure ofHarriottins are in agreement with the characteristic features of antimicrobial peptides, indicating its potential role in innate immunity of sicklefin chimaera. The histone H2A sequence of sicklefin chimera was found to differ from previously reported histone H2A sequences. Phylogenetic analysis based on histone H2A and cytochrome oxidase subunit-1 (CO1) gene revealed N. pinnata to occupy an intermediate position with respect to invertebrates and vertebrates
Resumo:
Following the Majority Strategy in graphs, other consensus strategies, namely Plurality Strategy, Hill Climbing and Steepest Ascent Hill Climbing strategies on graphs are discussed as methods for the computation of median sets of pro¯les. A review of algorithms for median computation on median graphs is discussed and their time complexities are compared. Implementation of the consensus strategies on median computation in arbitrary graphs is discussed
Resumo:
We show that the locally free class group of an order in a semisimple algebra over a number field is isomorphic to a certain ray class group. This description is then used to present an algorithm that computes the locally free class group. The algorithm is implemented in MAGMA for the case where the algebra is a group ring over the rational numbers.
Resumo:
In this paper we derive an identity for the Fourier coefficients of a differentiable function f(t) in terms of the Fourier coefficients of its derivative f'(t). This yields an algorithm to compute the Fourier coefficients of f(t) whenever the Fourier coefficients of f'(t) are known, and vice versa. Furthermore this generates an iterative scheme for N times differentiable functions complementing the direct computation of Fourier coefficients via the defining integrals which can be also treated automatically in certain cases.
Resumo:
A program is presented for the construction of relativistic symmetry-adapted molecular basis functions. It is applicable to 36 finite double point groups. The algorithm, based on the projection operator method, automatically generates linearly independent basis sets. Time reversal invariance is included in the program, leading to additional selection rules in the non-relativistic limit.
Resumo:
We present a new algorithm called TITANIC for computing concept lattices. It is based on data mining techniques for computing frequent itemsets. The algorithm is experimentally evaluated and compared with B. Ganter's Next-Closure algorithm.
Resumo:
Distributed systems are one of the most vital components of the economy. The most prominent example is probably the internet, a constituent element of our knowledge society. During the recent years, the number of novel network types has steadily increased. Amongst others, sensor networks, distributed systems composed of tiny computational devices with scarce resources, have emerged. The further development and heterogeneous connection of such systems imposes new requirements on the software development process. Mobile and wireless networks, for instance, have to organize themselves autonomously and must be able to react to changes in the environment and to failing nodes alike. Researching new approaches for the design of distributed algorithms may lead to methods with which these requirements can be met efficiently. In this thesis, one such method is developed, tested, and discussed in respect of its practical utility. Our new design approach for distributed algorithms is based on Genetic Programming, a member of the family of evolutionary algorithms. Evolutionary algorithms are metaheuristic optimization methods which copy principles from natural evolution. They use a population of solution candidates which they try to refine step by step in order to attain optimal values for predefined objective functions. The synthesis of an algorithm with our approach starts with an analysis step in which the wanted global behavior of the distributed system is specified. From this specification, objective functions are derived which steer a Genetic Programming process where the solution candidates are distributed programs. The objective functions rate how close these programs approximate the goal behavior in multiple randomized network simulations. The evolutionary process step by step selects the most promising solution candidates and modifies and combines them with mutation and crossover operators. This way, a description of the global behavior of a distributed system is translated automatically to programs which, if executed locally on the nodes of the system, exhibit this behavior. In our work, we test six different ways for representing distributed programs, comprising adaptations and extensions of well-known Genetic Programming methods (SGP, eSGP, and LGP), one bio-inspired approach (Fraglets), and two new program representations called Rule-based Genetic Programming (RBGP, eRBGP) designed by us. We breed programs in these representations for three well-known example problems in distributed systems: election algorithms, the distributed mutual exclusion at a critical section, and the distributed computation of the greatest common divisor of a set of numbers. Synthesizing distributed programs the evolutionary way does not necessarily lead to the envisaged results. In a detailed analysis, we discuss the problematic features which make this form of Genetic Programming particularly hard. The two Rule-based Genetic Programming approaches have been developed especially in order to mitigate these difficulties. In our experiments, at least one of them (eRBGP) turned out to be a very efficient approach and in most cases, was superior to the other representations.
Resumo:
KAAD (Katholischer Akademischer Ausländer-Dienst)
Resumo:
Vorgestellt wird eine weltweit neue Methode, Schnittstellen zwischen Menschen und Maschinen für individuelle Bediener anzupassen. Durch Anwenden von Abstraktionen evolutionärer Mechanismen wie Selektion, Rekombination und Mutation in der EOGUI-Methodik (Evolutionary Optimization of Graphical User Interfaces) kann eine rechnergestützte Umsetzung der Methode für Graphische Bedienoberflächen, insbesondere für industrielle Prozesse, bereitgestellt werden. In die Evolutionäre Optimierung fließen sowohl die objektiven, d.h. messbaren Größen wie Auswahlhäufigkeiten und -zeiten, mit ein, als auch das anhand von Online-Fragebögen erfasste subjektive Empfinden der Bediener. Auf diese Weise wird die Visualisierung von Systemen den Bedürfnissen und Präferenzen einzelner Bedienern angepasst. Im Rahmen dieser Arbeit kann der Bediener aus vier Bedienoberflächen unterschiedlicher Abstraktionsgrade für den Beispielprozess MIPS ( MIschungsProzess-Simulation) die Objekte auswählen, die ihn bei der Prozessführung am besten unterstützen. Über den EOGUI-Algorithmus werden diese Objekte ausgewählt, ggf. verändert und in einer neuen, dem Bediener angepassten graphischen Bedienoberfläche zusammengefasst. Unter Verwendung des MIPS-Prozesses wurden Experimente mit der EOGUI-Methodik durchgeführt, um die Anwendbarkeit, Akzeptanz und Wirksamkeit der Methode für die Führung industrieller Prozesse zu überprüfen. Anhand der Untersuchungen kann zu großen Teilen gezeigt werden, dass die entwickelte Methodik zur Evolutionären Optimierung von Mensch-Maschine-Schnittstellen industrielle Prozessvisualisierungen tatsächlich an den einzelnen Bediener anpaßt und die Prozessführung verbessert.
Resumo:
Summary: Recent research on the evolution of language and verbal displays (e.g., Miller, 1999, 2000a, 2000b, 2002) indicated that language is not only the result of natural selection but serves as a sexually-selected fitness indicator that is an adaptation showing an individual’s suitability as a reproductive mate. Thus, language could be placed within the framework of concepts such as the handicap principle (Zahavi, 1975). There are several reasons for this position: Many linguistic traits are highly heritable (Stromswold, 2001, 2005), while naturally-selected traits are only marginally heritable (Miller, 2000a); men are more prone to verbal displays than women, who in turn judge the displays (Dunbar, 1996; Locke & Bogin, 2006; Lange, in press; Miller, 2000a; Rosenberg & Tunney, 2008); verbal proficiency universally raises especially male status (Brown, 1991); many linguistic features are handicaps (Miller, 2000a) in the Zahavian sense; most literature is produced by men at reproduction-relevant age (Miller, 1999). However, neither an experimental study investigating the causal relation between verbal proficiency and attractiveness, nor a study showing a correlation between markers of literary and mating success existed. In the current studies, it was aimed to fill these gaps. In the first one, I conducted a laboratory experiment. Videos in which an actor and an actress performed verbal self-presentations were the stimuli for counter-sex participants. Content was always alike, but the videos differed on three levels of verbal proficiency. Predictions were, among others, that (1) verbal proficiency increases mate value, but that (2) this applies more to male than to female mate value due to assumed past sex-different selection pressures causing women to be very demanding in mate choice (Trivers, 1972). After running a two-factorial analysis of variance with the variables sex and verbal proficiency as factors, the first hypothesis was supported with high effect size. For the second hypothesis, there was only a trend going in the predicted direction. Furthermore, it became evident that verbal proficiency affects long-term more than short-term mate value. In the second study, verbal proficiency as a menstrual cycle-dependent mate choice criterion was investigated. Basically the same materials as in the former study were used with only marginal changes in the used questionnaire. The hypothesis was that fertile women rate high verbal proficiency in men higher than non-fertile women because of verbal proficiency being a potential indicator of “good genes”. However, no significant result could be obtained in support of the hypothesis in the current study. In the third study, the hypotheses were: (1) most literature is produced by men at reproduction-relevant age. (2) The more works of high literary quality a male writer produces, the more mates and children he has. (3) Lyricists have higher mating success than non-lyric writers because of poetic language being a larger handicap than other forms of language. (4) Writing literature increases a man’s status insofar that his offspring shows a significantly higher male-to-female sex ratio than in the general population, as the Trivers-Willard hypothesis (Trivers & Willard, 1973) applied to literature predicts. In order to test these hypotheses, two famous literary canons were chosen. Extensive biographical research was conducted on the writers’ mating successes. The first hypothesis was confirmed; the second one, controlling for life age, only for number of mates but not entirely regarding number of children. The latter finding was discussed with respect to, among others, the availability of effective contraception especially in the 20th century. The third hypothesis was not satisfactorily supported. The fourth hypothesis was partially supported. For the 20th century part of the German list, the secondary sex ratio differed with high statistical significance from the ratio assumed to be valid for a general population.