980 resultados para Evolutionary Polynomial Regression (EPR) for HydroSystems
Resumo:
14 p.
Resumo:
In this paper, reanalysis fields from the ECMWF have been statistically downscaled to predict from large-scale atmospheric fields, surface moisture flux and daily precipitation at two observatories (Zaragoza and Tortosa, Ebro Valley, Spain) during the 1961-2001 period. Three types of downscaling models have been built: (i) analogues, (ii) analogues followed by random forests and (iii) analogues followed by multiple linear regression. The inputs consist of data (predictor fields) taken from the ERA-40 reanalysis. The predicted fields are precipitation and surface moisture flux as measured at the two observatories. With the aim to reduce the dimensionality of the problem, the ERA-40 fields have been decomposed using empirical orthogonal functions. Available daily data has been divided into two parts: a training period used to find a group of about 300 analogues to build the downscaling model (1961-1996) and a test period (19972001), where models' performance has been assessed using independent data. In the case of surface moisture flux, the models based on analogues followed by random forests do not clearly outperform those built on analogues plus multiple linear regression, while simple averages calculated from the nearest analogues found in the training period, yielded only slightly worse results. In the case of precipitation, the three types of model performed equally. These results suggest that most of the models' downscaling capabilities can be attributed to the analogues-calculation stage.
Resumo:
We propose an integrated algorithm named low dimensional simplex evolution extension (LDSEE) for expensive global optimization in which only a very limited number of function evaluations is allowed. The new algorithm accelerates an existing global optimization, low dimensional simplex evolution (LDSE), by using radial basis function (RBF) interpolation and tabu search. Different from other expensive global optimization methods, LDSEE integrates the RBF interpolation and tabu search with the LDSE algorithm rather than just calling existing global optimization algorithms as subroutines. As a result, it can keep a good balance between the model approximation and the global search. Meanwhile it is self-contained. It does not rely on other GO algorithms and is very easy to use. Numerical results show that it is a competitive alternative for expensive global optimization.
Resumo:
ENGLISH: We analyzed catches per unit of effort (CPUE) from the Japanese longline fishery for bigeye tuna (Thunnus obesus) in the central and eastern Pacific Ocean (EPO) with regression tree methods. Regression trees have not previously been used to estimate time series of abundance indices fronl CPUE data. The "optimally sized" tree had 139 parameters; year, month, latitude, and longitude interacted to affect bigeye CPUE. The trend in tree-based abundance indices for the EPO was similar to trends estimated from a generalized linear model and fronl an empirical model that combines oceanographic data with information on the distribution of fish relative to environmental conditions. The regression tree was more parsimonious and would be easier to implement than the other two nl0dels, but the tree provided no information about the nlechanisms that caused bigeye CPUEs to vary in time and space. Bigeye CPUEs increased sharply during the mid-1980's and were more variable at the northern and southern edges of the fishing grounds. Both of these results can be explained by changes in actual abundance and changes in catchability. Results from a regression tree that was fitted to a subset of the data indicated that, in the EPO, bigeye are about equally catchable with regular and deep longlines. This is not consistent with observations that bigeye are more abundant at depth and indicates that classification by gear type (regular or deep longline) may not provide a good measure of capture depth. Asimulated annealing algorithm was used to summarize the tree-based results by partitioning the fishing grounds into regions where trends in bigeye CPUE were similar. Simulated annealing can be useful for designing spatial strata in future sampling programs. SPANISH: Analizamos la captura por unidad de esfuerzo (CPUE) de la pesquería palangrera japonesa de atún patudo (Thunnus obesus) en el Océano Pacifico oriental (OPO) y central con métodos de árbol de regresión. Hasta ahora no se han usado árboles de regresión para estimar series de tiempo de índices de abundancia a partir de datos de CPUE. EI árbol de "tamaño optimo" tuvo 139 parámetros; ano, mes, latitud, y longitud interactuaron para afectar la CPUE de patudo. La tendencia en los índices de abundancia basados en árboles para el OPO fue similar a las tendencias estimadas con un modelo lineal generalizado y con un modelo empírico que combina datos oceanográficos con información sobre la distribución de los peces en relación con las condiciones ambientales. EI árbol de regresión fue mas parsimonioso y seria mas fácil de utilizar que los dos otros modelos, pero no proporciono información sobre los mecanismos que causaron que las CPUE de patudo valiaran en el tiempo y en el espacio. Las CPUE de patudo aumentaron notablemente a mediados de los anos 80 y fueron mas variables en los extremos norte y sur de la zona de pesca. Estos dos resultados pueden ser explicados por cambios en la abundancia real y cambios en la capturabilidad. Los resultados de un arbal de regresión ajustado a un subconjunto de los datos indican que, en el OPO, el patudo es igualmente capturable con palangres regulares y profundos. Esto no es consistente con observaciones de que el patudo abunda mas a profundidad e indica que clasificación por tipo de arte (palangre regular 0 profundo) podría no ser una buena medida de la profundidad de captura. Se uso un algoritmo de templado simulado para resumir los resultados basados en el árbol clasificando las zonas de pesca en zonas con tendencias similares en la CPUE de patudo. El templado simulado podría ser útil para diseñar estratos espaciales en programas futuros de muestreo. (PDF contains 45 pages.)
Resumo:
This thesis summarizes the application of conventional and modern electron paramagnetic resonance (EPR) techniques to establish proximity relationships between paramagnetic metal centers in metalloproteins and between metal centers and magnetic ligand nuclei in two important and timely membrane proteins: succinate:ubiquinone oxidoreductase (SQR) from Paracoccus denitrificans and particulate methane monooxygenase (pMMO) from Methylococcus capsulatus. Such proximity relationships are thought to be critical to the biological function and the associated biochemistry mediated by the metal centers in these proteins. A mechanistic understanding of biological function relies heavily on structure-function relationships and the knowledge of how molecular structure and electronic properties of the metal centers influence the reactivity in metalloenzymes. EPR spectroscopy has proven to be one of the most powerful techniques towards obtaining information about interactions between metal centers as well as defining ligand structures. SQR is an electron transport enzyme wherein the substrates, organic and metallic cofactors are held relatively far apart. Here, the proximity relationships of the metallic cofactors were studied through their weak spin-spin interactions by means of EPR power saturation and electron spin-lattice (T_1) measurements, when the enzyme was poised at designated reduction levels. Analysis of the electron T_1 measurements for the S-3 center when the b-heme is paramagnetic led to a detailed analysis of the dipolar interactions and distance determination between two interacting metal centers. Studies of ligand environment of the metal centers by electron spin echo envelope modulation (ESEEM) spectroscopy resulted in the identication of peptide nitrogens as coupled nuclei in the environment of the S-1 and S-3 centers.
Finally, an EPR model was developed to describe the ferromagnetically coupled trinuclear copper clusters in pMMO when the enzyme is oxidized. The Cu(II) ions in these clusters appear to be strongly exchange coupled, and the EPR is consistent with equilateral triangular arrangements of type 2 copper ions. These results offer the first glimpse of the magneto-structural correlations for a trinuclear copper cluster of this type, which, until the work on pMMO, has had no precedent in the metalloprotein literature. Such trinuclear copper clusters are even rare in synthetic models.
Resumo:
A depressão pós-parto (DPP) é uma condição prevalente que afeta globalmente as mulheres puérperas. Uma hipótese evolutiva aborda a depressão, e consequentemente a DPP, como uma resposta proveniente da evolução do comportamento humano ao longo da História, através da seleção natural. A teoria do investimento parental sugere que os pais não investem automaticamente em toda prole; o investimento é direcionado para que o sucesso reprodutivo seja máximo. No caso de os riscos superarem os benefícios reprodutivos, sintomas de depressão se desenvolvem como sinal de alerta. O objetivo do estudo foi identificar fatores associados à DPP que fossem compatíveis com a teoria do investimento parental. Estudo transversal realizado com 811 mães de lactentes até cinco meses de idade, no município do Rio de Janeiro. A presença de DPP foi definida com base no escore da Escala de Edinburgh (EPDS). Fatores potencialmente associados à DPP foram analisados através de regressão logística com ajuste para fatores de confundimento. Os fatores significativamente associados à DPP foram: apoio social inadequado (OR 3,38; IC 95% 2,32-4,94), baixa escolaridade (OR 2,82; IC 95% 1,69-4,70), violência física entre parceiros íntimos na gestação (OR 2,33; IC 95% 1,56-3,47), idade materna inferior a 35 anos (OR 2,20; IC 95% 1,05-4,64), falta de companheiro (OR 1,90; IC 95% 1,16-3,12), internações durante a gestação (OR 1,87; IC 95% 1,12-3,14) e prematuridade do recém-nascido (OR 1,87; IC 95% 1,02-3,42). Em suma, identificamos alguns fatores associados à DPP que podem ser úteis no rastreamento e acompanhamento de mulheres de risco. Alguns dos fatores associados à DPP podem ser explicados através das hipotéses evolutivas contempladas neste estudo. Entretanto, os achados encontrados não são suficientes para esgotar o conhecimento referente a esta questão. Futuras pesquisas devem focar em diferentes abordagens desta condição e acompanhamento das consequências para as mulheres e suas famílias.