960 resultados para Euler, Teorema de
Resumo:
El objetivo de este artículo es presentar varias pruebas visuales sobre la irracionalidad de raíz de 2, las cuales no son muy conocidas comparadas con otras pruebas, como por ejemplo, las demostraciones del teorema de Pitágoras. Además, esas demostraciones pueden ser útiles como una alternativa a la clásica demostración griega y de esta forma se intentará llamar la atención de los alumnos.
Resumo:
Por quinta vez puso cuatro motas de tinta en el papel, les puso nombres (A, B, C, D) y los unió con segmentos para formar un cuadrilátero. Luego señaló los puntos medios de sus cuatro lados y los conectó formando otro cuadrilátero (P, Q, R, S). Ahí estaba el problema. Ese cuadrilátero interior siempre resultaba ser un paralelogramo pusiera como pusiera los cuatro puntos originales. ¿Acaso había orden en el caos? Por un momento pensó que quizá había truco, que tal vez sucedía así porque la gente ponía los puntos de formas similares. Pero ya había probado configuraciones muy raras, incluso dejó que los segmentos del cuadrilátero ABCD se interceptasen, y siempre obtenía idéntico resultado. No, lo que parece cumplirse para cualquier caso no es ningún truco, sino un teorema que demostrar.
Resumo:
Se proponen tres demostraciones sobre el valor de la potencia de un punto con respecto a una circunferencia. La primera utiliza el método de la geometría analítica, y las propiedades de las soluciones de la ecuación de segundo grado. La segunda se basa sólo en el Teorema de Pitágoras. Y, la tercera utiliza el álgebra de vectores. Por último, se da el resultado de la potencia de un punto con respecto a una elipse. Con esto se intenta suplir el hueco en los libros de texto, de nivel de Bachillerato, que no recogen una demostración general sobre la constancia de la potencia del punto con respecto a una circunferencia.
Resumo:
In fluid mechanics, it is well accepted that the Euler equation is one of the reduced forms of the Navier-Stokes equation by truncating the viscous effect. There are other truncation techniques currently being used in order to truncate the Navier-Stokes equation to a reduced form. This paper describes one such technique, suitable for adaptive domain decomposition methods for the solution of viscous flow problems. The physical domain of a viscous flow problem is partitioned into viscous and inviscid subdomains without overlapping regions, and the technique is embedded into a finite volume method. Some numerical results are provided for a flat plate and the NACA0012 aerofoil. Issues related to distributed computing are discussed.
Resumo:
This work is concerned with the development of a numerical scheme capable of producing accurate simulations of sound propagation in the presence of a mean flow field. The method is based on the concept of variable decomposition, which leads to two separate sets of equations. These equations are the linearised Euler equations and the Reynolds-averaged Navier–Stokes equations. This paper concentrates on the development of numerical schemes for the linearised Euler equations that leads to a computational aeroacoustics (CAA) code. The resulting CAA code is a non-diffusive, time- and space-staggered finite volume code for the acoustic perturbation, and it is validated against analytic results for pure 1D sound propagation and 2D benchmark problems involving sound scattering from a cylindrical obstacle. Predictions are also given for the case of prescribed source sound propagation in a laminar boundary layer as an illustration of the effects of mean convection. Copyright © 1999 John Wiley & Sons, Ltd.
Resumo:
For the numerical solution of the linearized Euler equations, an optimized computational scheme is considered. It is based on fully staggered (in space and time) regular meshes and on a simple mirroring procedure at the stepwise solid walls. There is no need to define ghost points into the solid ohjects that reflect the sound waves. Test results demonstrate the accuracy of the method that may be used for aeroacoustic problems with complex geometries.
Resumo:
The parallelization of an industrially important in-house computational fluid dynamics (CFD) code for calculating the airflow over complex aircraft configurations using the Euler or Navier–Stokes equations is presented. The code discussed is the flow solver module of the SAUNA CFD suite. This suite uses a novel grid system that may include block-structured hexahedral or pyramidal grids, unstructured tetrahedral grids or a hybrid combination of both. To assist in the rapid convergence to a solution, a number of convergence acceleration techniques are employed including implicit residual smoothing and a multigrid full approximation storage scheme (FAS). Key features of the parallelization approach are the use of domain decomposition and encapsulated message passing to enable the execution in parallel using a single programme multiple data (SPMD) paradigm. In the case where a hybrid grid is used, a unified grid partitioning scheme is employed to define the decomposition of the mesh. The parallel code has been tested using both structured and hybrid grids on a number of different distributed memory parallel systems and is now routinely used to perform industrial scale aeronautical simulations. Copyright © 2000 John Wiley & Sons, Ltd.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: • a single mesh covering the entire domain, • a Navier–Stokes flow, • a single FV-UM discretisation approach for both the flow and solid mechanics procedures, • an implicit predictor–corrector version of the Newmark algorithm, • a single code embedding the whole strategy.
Resumo:
A three-dimensional finite volume, unstructured mesh (FV-UM) method for dynamic fluid–structure interaction (DFSI) is described. Fluid structure interaction, as applied to flexible structures, has wide application in diverse areas such as flutter in aircraft, wind response of buildings, flows in elastic pipes and blood vessels. It involves the coupling of fluid flow and structural mechanics, two fields that are conventionally modelled using two dissimilar methods, thus a single comprehensive computational model of both phenomena is a considerable challenge. Until recently work in this area focused on one phenomenon and represented the behaviour of the other more simply. More recently, strategies for solving the full coupling between the fluid and solid mechanics behaviour have been developed. A key contribution has been made by Farhat et al. [Int. J. Numer. Meth. Fluids 21 (1995) 807] employing FV-UM methods for solving the Euler flow equations and a conventional finite element method for the elastic solid mechanics and the spring based mesh procedure of Batina [AIAA paper 0115, 1989] for mesh movement. In this paper, we describe an approach which broadly exploits the three field strategy described by Farhat for fluid flow, structural dynamics and mesh movement but, in the context of DFSI, contains a number of novel features: a single mesh covering the entire domain, a Navier–Stokes flow, a single FV-UM discretisation approach for both the flow and solid mechanics procedures, an implicit predictor–corrector version of the Newmark algorithm, a single code embedding the whole strategy.
Resumo:
The growth of computer power allows the solution of complex problems related to compressible flow, which is an important class of problems in modern day CFD. Over the last 15 years or so, many review works on CFD have been published. This book concerns both mathematical and numerical methods for compressible flow. In particular, it provides a clear cut introduction as well as in depth treatment of modern numerical methods in CFD. This book is organised in two parts. The first part consists of Chapters 1 and 2, and is mainly devoted to theoretical discussions and results. Chapter 1 concerns fundamental physical concepts and theoretical results in gas dynamics. Chapter 2 describes the basic mathematical theory of compressible flow using the inviscid Euler equations and the viscous Navier–Stokes equations. Existence and uniqueness results are also included. The second part consists of modern numerical methods for the Euler and Navier–Stokes equations. Chapter 3 is devoted entirely to the finite volume method for the numerical solution of the Euler equations and covers fundamental concepts such as order of numerical schemes, stability and high-order schemes. The finite volume method is illustrated for 1-D as well as multidimensional Euler equations. Chapter 4 covers the theory of the finite element method and its application to compressible flow. A section is devoted to the combined finite volume–finite element method, and its background theory is also included. Throughout the book numerous examples have been included to demonstrate the numerical methods. The book provides a good insight into the numerical schemes, theoretical analysis, and validation of test problems. It is a very useful reference for applied mathematicians, numerical analysts, and practice engineers. It is also an important reference for postgraduate researchers in the field of scientific computing and CFD.
Resumo:
Review of biography of Leonhard Euler - Andreas K Heyne and Alice P Heyne (text) and Elena S Pini (illustrations), Leonhard Euler: a man to be reckoned with, translated from the German by Alice P Heyne and Tahu Matheson, Birkhauser, 2007, 45 pp, £14.50, ISBN 3-7643-8332-9.
Resumo:
The solution process for diffusion problems usually involves the time development separately from the space solution. A finite difference algorithm in time requires a sequential time development in which all previous values must be determined prior to the current value. The Stehfest Laplace transform algorithm, however, allows time solutions without the knowledge of prior values. It is of interest to be able to develop a time-domain decomposition suitable for implementation in a parallel environment. One such possibility is to use the Laplace transform to develop coarse-grained solutions which act as the initial values for a set of fine-grained solutions. The independence of the Laplace transform solutions means that we do indeed have a time-domain decomposition process. Any suitable time solver can be used for the fine-grained solution. To illustrate the technique we shall use an Euler solver in time together with the dual reciprocity boundary element method for the space solution
Resumo:
Brown's model for the relaxation of the magnetization of a single domain ferromagnetic particle is considered. This model results in the Fokker-Planck equation of the process. The solution of this equation in the cases of most interest is non- trivial. The probability density of orientations of the magnetization in the Fokker-Planck equation can be expanded in terms of an infinite set of eigenfunctions and their corresponding eigenvalues where these obey a Sturm-Liouville type equation. A variational principle is applied to the solution of this equation in the case of an axially symmetric potential. The first (non-zero) eigenvalue, corresponding to the largest time constant, is considered. From this we obtain two new results. Firstly, an approximate minimising trial function is obtained which allows calculation of a rigorous upper bound. Secondly, a new upper bound formula is derived based on the Euler-Lagrange condition. This leads to very accurate calculation of the eigenvalue but also, interestingly, from this, use of the simplest trial function yields an equivalent result to the correlation time of Coffey et at. and the integral relaxation time of Garanin. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
Transparency in nonprofit sector and foundations, as an element to enhance the confidence of stakeholders in the organization, is a fact shown by several studies in recent decades. Transparency can be considered in various fields and through different channels. In our study we focused on the analysis of the organizational and economic transparency of foundations, shown through the voluntary information on their Website. We review the theoretical previous studies published to put to the foundations within the framework of the social economy. This theoretical framework has focused on accountability that make foundations in relation to its social function and its management, especially since the most recent focus of information transparency across the Website.In this theoretical framework was made an index to quantify the voluntary information which is shown on its website. This index has been developed ad hoc for this study and applied to a group of large corporate foundations.With the application of these data are obtained two kind of results, to a descriptive level and to a inferential level.We analyzed the statistical correlation between economic transparency and organizational transparency offered in the Website through quantified variables by a multiple linear regression. This empirical analysis allows us to draw conclusions about the level of transparency offered by these organizations in relation to their organizational and financial information, as well as explain the relation between them.