601 resultados para Erythroid reconstitution
Resumo:
Iron regulatory protein-1 (IRP-1), a central cytoplasmic regulator of cellular iron metabolism, is rapidly activated by oxidative stress to bind to mRNA iron-responsive elements. We have reconstituted the response of IRP-1 to extracellular H2O2 in a system derived from murine B6 fibroblasts permeabilized with streptolysin-O. This procedure allows separation of the cytosol from the remainder of the cells (cell pellet). IRP-1 in the cytosolic fraction fails to be directly activated by addition of H2O2. IRP-1 activation requires the presence of a nonsoluble, possibly membrane-associated component in the cell pellet. The streptolysin-O-based in vitro system faithfully recapitulates characteristic hallmarks of IRP-1 activation by H2O2 in intact cells. We show that the H2O2-mediated activation of IRP-1 is temperature dependent and sensitive to treatment with calf intestinal alkaline phosphatase (CIAP). Although IRP-1 activation is unaffected by addition of excess ATP or GTP to this in vitro system, it is negatively affected by the nonhydrolyzable nucleotide analogs adenylyl-imidodiphosphate and guanylyl-imidophosphate and completely blocked by ATP-γS and GTP-γS. The in vitro reconstitution of this oxidative stress-induced pathway has opened a different avenue for the biochemical dissection of the regulation of mammalian iron metabolism by oxidative stress. Our data show that H2O2 must be sensed to stimulate a pathway to activate IRP-1.
Resumo:
Large conductance voltage- and Ca2+-dependent K+ (MaxiK) channels show sequence similarities to voltage-gated ion channels. They have a homologous S1-S6 region, but are unique at the N and C termini. At the C terminus, MaxiK channels have four additional hydrophobic regions (S7-S10) of unknown topology. At the N terminus, we have recently proposed a new model where MaxiK channels have an additional transmembrane region (S0) that confers β subunit regulation. Using transient expression of epitope tagged MaxiK channels, in vitro translation, functional, and “in vivo” reconstitution assays, we now show that MaxiK channels have seven transmembrane segments (S0-S6) at the N terminus and a S1-S6 region that folds in a similar way as in voltage-gated ion channels. Further, our results indicate that hydrophobic segments S9-S10 in the C terminus are cytoplasmic and unequivocally demonstrate that S0 forms an additional transmembrane segment leading to an exoplasmic N terminus.
Resumo:
Based on the discovery of coenzyme Q (CoQ) as an obligatory cofactor for H+ transport by uncoupling protein 1 (UCP1) [Echtay, K. S., Winkler, E. & Klingenberg, M. (2000) Nature (London) 408, 609–613] we show here that UCP2 and UCP3 are also highly active H+ transporters and require CoQ and fatty acid for H+ transport, which is inhibited by low concentrations of nucleotides. CoQ is proposed to facilitate injection of H+ from fatty acid into UCP. Human UCP2 and 3 expressed in Escherichia coli inclusion bodies are solubilized, and by exchange of sarcosyl against digitonin, nucleotide binding as measured with 2′-O-[5-(dimethylamino)naphthalene-1-sulfonyl]-GTP can be restored. After reconstitution into vesicles, Cl− but no H+ are transported. The addition of CoQ initiates H+ transport in conjunction with fatty acids. This increase is fully sensitive to nucleotides. The rates are as high as with reconstituted UCP1 from mitochondria. Maximum activity is at a molar ratio of 1:300 of CoQ:phospholipid. In UCP2 as in UCP1, ATP is a stronger inhibitor than ADP, but in UCP3 ADP inhibits more strongly than ATP. Thus UCP2 and UCP3 are regulated differently by nucleotides, in line with their different physiological contexts. These results confirm the regulation of UCP2 and UCP3 by the same factors CoQ, fatty acids, and nucleotides as UCP1. They supersede reports that UCP2 and UCP3 may not be H+ transporters.
Resumo:
Despite considerable concerns with pharmacological stimulation of fetal hemoglobin (Hb F) as a therapeutic option for the β-globin disorders, the molecular basis of action of Hb F-inducing agents remains unclear. Here we show that an intracellular pathway including soluble guanylate cyclase (sGC) and cGMP-dependent protein kinase (PKG) plays a role in induced expression of the γ-globin gene. sGC, an obligate heterodimer of α- and β-subunits, participates in a variety of physiological processes by converting GTP to cGMP. Northern blot analyses with erythroid cell lines expressing different β-like globin genes showed that, whereas the β-subunit is expressed at similar levels, high-level expression of the α-subunit is preferentially observed in erythroid cells expressing γ-globin but not those expressing β-globin. Also, the levels of expression of the γ-globin gene correlate to those of the α-subunit. sGC activators or cGMP analogs increased expression of the γ-globin gene in erythroleukemic cells as well as in primary erythroblasts from normal subjects and patients with β-thalassemia. Nuclear run-off assays showed that the sGC activator protoporphyrin IX stimulates transcription of the γ-globin gene. Furthermore, increased expression of the γ-globin gene by well known Hb F-inducers such as hemin and butyrate was abolished by inhibiting sGC or PKG activity. Taken together, these results strongly suggest that the sGC–PKG pathway constitutes a mechanism that regulates expression of the γ-globin gene. Further characterization of this pathway should permit us to develop new therapeutics for the β-globin disorders.
Resumo:
The protein subunit of RNase P from a thermophilic bacterium, Thermotoga maritima, was overexpressed in and purified from Escherichia coli. The cloned protein was reconstituted with the RNA subunit transcribed in vitro. The temperature optimum of the holoenzyme is near 50°C, with no enzymatic activity at 65°C or above. This finding is in sharp contrast to the optimal growth temperature of T.maritima, which is near 80°C. However, in heterologous reconstitution experiments in vitro with RNase P subunits from other species, we found that the protein subunit from T.maritima was responsible for the comparative thermal stability of such complexes.
Resumo:
Somatic mosaicism has been observed previously in the lymphocyte population of patients with Fanconi anemia (FA). To identify the cellular origin of the genotypic reversion, we examined each lymphohematopoietic and stromal cell lineage in an FA patient with a 2815–2816ins19 mutation in FANCA and known lymphocyte somatic mosaicism. DNA extracted from individually plucked peripheral blood T cell colonies and marrow colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells revealed absence of the maternal FANCA exon 29 mutation in 74.0%, 80.3%, and 86.2% of colonies, respectively. These data, together with the absence of the FANCA exon 29 mutation in Epstein–Barr virus-transformed B cells and its presence in fibroblasts, indicate that genotypic reversion, most likely because of back mutation, originated in a lymphohematopoietic stem cell and not solely in a lymphocyte population. Contrary to a predicted increase in marrow cellularity resulting from reversion in a hematopoietic stem cell, pancytopenia was progressive. Additional evaluations revealed a partial deletion of 11q in 3 of 20 bone marrow metaphase cells. By using interphase fluorescence in situ hybridization with an MLL gene probe mapped to band 11q23 to identify colony-forming unit granulocyte–macrophage and burst-forming unit erythroid cells with the 11q deletion, the abnormal clone was exclusive to colonies with the FANCA exon 29 mutation. Thus, we demonstrate the spontaneous genotypic reversion in a lymphohematopoietic stem cell. The subsequent development of a clonal cytogenetic abnormality in nonrevertant cells suggests that ex vivo correction of hematopoietic stem cells by gene transfer may not be sufficient for providing life-long stable hematopoiesis in patients with FA.
Resumo:
Btk is a critical molecule in B cell antigen receptor (BCR)-coupled signaling, and its activity is regulated by Lyn and Syk. Although the molecular mechanism of Lyn-dependent Btk activation has been investigated, that of Syk-dependent Btk activation has remained unidentified. We have demonstrated that BLNK mediates Syk-dependent Btk activation. In a reconstitution cell system, coexpression of BLNK allows Syk to phosphorylate Btk on its tyrosine 551, leading to the enhancement of Btk activity. This phosphorylation depends on the interaction of Btk and BLNK by means of the Btk-Src homology 2 domain. The existence of such an activation mechanism is supported by the observation that the BCR-induced Btk phosphorylation and activation are significantly reduced in BLNK-deficient B cells as well as in Syk-deficient B cells. Although previous observations have identified the function of BLNK as the linker that integrates the action of Btk and Syk into downstream effectors such as phospholipase Cγ2, our present study indicates another function of BLNK that connects the activity of Syk to that of Btk.
Resumo:
The membrane proteins of peripheral light-harvesting complexes (LHCs) bind chlorophylls and carotenoids and transfer energy to the reaction centers for photosynthesis. LHCs of chlorophytes, chromophytes, dinophytes, and rhodophytes are similar in that they have three transmembrane regions and several highly conserved Chl-binding residues. All LHCs bind Chl a, but in specific taxa certain characteristic pigments accompany Chl a: Chl b and lutein in chlorophytes, Chl c and fucoxanthin in chromophytes, Chl c and peridinin in dinophytes, and zeaxanthin in rhodophytes. The specificity of pigment binding was examined by in vitro reconstitution of various pigments with a simple light-harvesting protein (LHCaR1), from a red alga (Porphyridium cruentum), that normally has eight Chl a and four zeaxanthin molecules. The pigments typical of a chlorophyte (Spinacea oleracea), a chromophyte (Thallasiosira fluviatilis), and a dinophyte (Prorocentrum micans) were found to functionally bind to this protein as evidenced by their participation in energy transfer to Chl a, the terminal pigment. This is a demonstration of a functional relatedness of rhodophyte and higher plant LHCs. The results suggest that eight Chl-binding sites per polypeptide are an ancestral trait, and that the flexibility to bind various Chl and carotenoid pigments may have been retained throughout the evolution of LHCs.
Resumo:
The human and animal fatty acid synthases are dimers of two identical multifunctional proteins (Mr 272,000) arranged in an antiparallel configuration. This arrangement generates two active centers for fatty acid synthesis separated by interdomain (ID) regions and predicts that two appropriate halves of the monomer should be able to reconstitute an active fatty acid synthesizing center. This prediction was confirmed by the reconstitution of the synthase active center by using two heterologously expressed halves of the monomer protein. Each of these recombinant halves of synthase monomer contains half of the ID regions. We show here that the fatty acid synthase activity could not be reconstituted when the ID sequences present in the two recombinant halves are deleted, suggesting that these ID sequences are essential for fatty acid synthase dimer formation. Further, we confirm that the ID sequences are the only regions of fatty acid synthase monomers that showed significant dimer formation, by using the yeast two-hybrid system. These results are consistent with the proposal that the ID region, which has no known catalytic activity, associates readily and holds together the two dynamic active centers of the fatty acid synthase dimer, therefore playing an important role in the architecture of catalytically active fatty acid synthase.
Resumo:
Telomerase inhibition has been touted as a novel cancer-selective therapeutic goal based on the observation of high telomerase levels in most cancers and the importance of telomere maintenance in long-term cellular growth and survival. Here, the impact of telomere dysfunction on chemotherapeutic responses was assessed in normal and neoplastic cells derived from telomerase RNA null (mTERC−/−) mice. Telomere dysfunction, rather than telomerase per se, was found to be the principal determinant governing chemosensitivity specifically to agents that induced double-stranded DNA breaks (DSB). Enhanced chemosensitivity in telomere dysfunctional cells was linked to therapy-induced fragmentation and multichromosomal fusions, whereas telomerase reconstitution restored genomic integrity and chemoresistance. Loss of p53 function muted the cytotoxic effects of DSB-inducing agents in cells with telomere dysfunction. Together, these results point to the combined use of DSB-inducing agents and telomere maintenance inhibition as an effective anticancer therapeutic approach particularly in cells with intact p53-dependent checkpoint responses.
Resumo:
The transporter associated with antigen processing (TAP) is essential for intracellular transport of protein fragments into the endoplasmic reticulum for loading of major histocompatibility complex (MHC) class I molecules. On the cell surface, these peptide–MHC complexes are monitored by cytotoxic T lymphocytes. To study the ATP hydrolysis of TAP, we developed an enrichment and reconstitution procedure, by which we fully restored TAP function in proteoliposomes. A TAP-specific ATPase activity was identified that could be stimulated by peptides and blocked by the herpes simplex virus protein ICP47. Strikingly, the peptide-binding motif of TAP directly correlates with the stimulation of the ATPase activity, demonstrating that the initial peptide-binding step is responsible for TAP selectivity. ATP hydrolysis follows Michaelis–Menten kinetics with a maximal velocity Vmax of 2 μmol/min per mg TAP, corresponding to a turnover number of approximately 5 ATP per second. This turnover rate is sufficient to account for the role of TAP in peptide loading of MHC molecules and the overall process of antigen presentation. Interestingly, sterically restricted peptides that bind but are not transported by TAP do not stimulate ATPase activity. These results point to coordinated dialogue between the peptide-binding site, the nucleotide-binding domain, and the translocation site via conformational changes within the TAP complex.
Resumo:
During mouse embryogenesis, two waves of hematopoietic progenitors originate in the yolk sac. The first wave consists of primitive erythroid progenitors that arise at embryonic day 7.0 (E7.0), whereas the second wave consists of definitive erythroid progenitors that arise at E8.25. To determine whether these unilineage hematopoietic progenitors arise from multipotential precursors, we investigated the kinetics of high proliferative potential colony-forming cells (HPP-CFC), multipotent precursors that give rise to macroscopic colonies when cultured in vitro. No HPP-CFC were found at presomite stages (E6.5–E7.5). Rather, HPP-CFC were detected first at early somite stages (E8.25), exclusively in the yolk sac. HPP-CFC were found subsequently in the bloodstream at higher levels than the remainder of the embryo proper. However, the yolk sac remains the predominant site of HPP-CFC expansion (>100-fold) until the liver begins to serve as the major hematopoietic organ at E11.5. On secondary replating, embryonic HPP-CFC give rise to definitive erythroid and macrophage (but not primitive erythroid) progenitors. Our findings support the hypothesis that definitive but not primitive hematopoietic progenitors originate from yolk sac-derived HPP-CFC during late gastrulation.
Resumo:
Mutations of the tumor suppressor PTEN, a phosphatase with specificity for 3-phosphorylated inositol phospholipids, accompany progression of brain tumors from benign to the most malignant forms. Tumor progression, particularly in aggressive and malignant tumors, is associated with the induction of angiogenesis, a process termed the angiogenic switch. Therefore, we tested whether PTEN regulates tumor progression by modulating angiogenesis. U87MG glioma cells stably reconstituted with PTEN cDNA were tested for growth in a nude mouse orthotopic brain tumor model. We observed that the reconstitution of wild-type PTEN had no effect on in vitro proliferation but dramatically decreased tumor growth in vivo and prolonged survival in mice implanted intracranially with these tumor cells. PTEN reconstitution diminished phosphorylation of AKT within the PTEN-reconstituted tumor, induced thrombospondin 1 expression, and suppressed angiogenic activity. These effects were not observed in tumors reconstituted with a lipid phosphatase inactive G129E mutant of PTEN, a result that provides evidence that the lipid phosphatase activity of PTEN regulates the angiogenic response in vivo. These data provide evidence that PTEN regulates tumor-induced angiogenesis and the progression of gliomas to a malignant phenotype via the regulation of phosphoinositide-dependent signals.
Resumo:
We searched for clonable committed T cell progenitors in the adult mouse bone marrow and isolated rare (≈0.05%) cells with the Thy-1hiCD2−CD16+CD44hiCD25−Lin− phenotype. In vivo experiments showed that these cells were progenitors committed only to reconstituting the T cell lineage of irradiated Ly5 congenic hosts. Reconstitution of the thymus was minimal compared with that of the bone marrow, spleen, and lymph nodes. At limiting dilutions, donor T cell reconstitution of the spleen frequently occurred without detectable donor cells in the thymus. Progenitors were capable of rapidly reconstituting athymic hosts. In conclusion, the clonable bone marrow progenitors were capable of T cell reconstitution predominantly by means of an extrathymic pathway.
Resumo:
We have investigated two NADPH-cytochrome (Cyt) P450 reductase isoforms encoded by separate genes (AR1 and AR2) in Arabidopsis thaliana. We isolated AR1 and AR2 cDNAs using a mung bean (Phaseolus aureus L.) NADPH-Cyt P450 reductase cDNA as a probe. The recombinant AR1 and AR2 proteins produced using a baculovirus expression system showed similar Km values for Cyt c and NADPH, respectively. In the reconstitution system with a recombinant cinnamate 4-hydroxylase (CYP73A5), the recombinant AR1 and AR2 proteins gave the same level of cinnamate 4-hydroxylase activity (about 70 nmol min−1 nmol−1 P450). The AR2 gene expression was transiently induced by 4- and 3-fold within 1 h of wounding and light treatments, respectively, and the induction time course preceded those of CYP73A5 and a phenylalanine ammonia-lyase (PAL1) gene. On the contrary, the AR1 expression level did not change during the treatments. Analysis of the AR1 and AR2 gene structure revealed that only the AR2 promoter contained three putative sequence motifs (boxes P, A, and L), which are involved in the coordinated expression of CYP73A5 and other phenylpropanoid pathway genes. These results suggest the possibility that AR2 transcription may be functionally linked to the induced levels of phenylpropanoid pathway enzymes.