923 resultados para Error bounds
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) takes only O(n-vlog3/2n) messages to elect a unique leader (with high probability). This algorithm is then extended to solve leader election on any connected non-bipartiten-node graph G in O(t(G)) time and O(t(G)n-vlog3/2n) messages, where t(G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficientdeterministic leader election algorithms. Finally, an almost-tight lower bound is presented for randomized leader election, showing that O(n-v) messages are needed for any O(1) time leader election algorithm which succeeds with high probability. It is also shown that O(n 1/3) messages are needed by any leader election algorithm that succeeds with high probability, regardless of the number of the rounds. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.
Resumo:
Multiuser diversity gain has been investigated well in terms of a system capacity formulation in the literature. In practice, however, designs on multiuser systems with nonzero error rates require a relationship between the error rates and the number of users within a cell. Considering a best-user scheduling, where the user with the best channel condition is scheduled to transmit per scheduling interval, our focus is on the uplink. We assume that each user communicates with the base station through a single-input multiple-output channel. We derive a closed-form expression for the average BER, and analyze how the average BER goes to zero asymptotically as the number of users increases for a given SNR. Note that the analysis of average BER even in SI SO multiuser diversity systems has not been done with respect to the number of users for a given SNR. Our analysis can be applied to multiuser diversity systems with any number of antennas.
Resumo:
This paper concerns randomized leader election in synchronous distributed networks. A distributed leader election algorithm is presented for complete n-node networks that runs in O(1) rounds and (with high probability) uses only O(√ √nlog<sup>3/2</sup>n) messages to elect a unique leader (with high probability). When considering the "explicit" variant of leader election where eventually every node knows the identity of the leader, our algorithm yields the asymptotically optimal bounds of O(1) rounds and O(. n) messages. This algorithm is then extended to one solving leader election on any connected non-bipartite n-node graph G in O(τ(. G)) time and O(τ(G)n√log<sup>3/2</sup>n) messages, where τ(. G) is the mixing time of a random walk on G. The above result implies highly efficient (sublinear running time and messages) leader election algorithms for networks with small mixing times, such as expanders and hypercubes. In contrast, previous leader election algorithms had at least linear message complexity even in complete graphs. Moreover, super-linear message lower bounds are known for time-efficient deterministic leader election algorithms. Finally, we present an almost matching lower bound for randomized leader election, showing that Ω(n) messages are needed for any leader election algorithm that succeeds with probability at least 1/. e+. ε, for any small constant ε. >. 0. We view our results as a step towards understanding the randomized complexity of leader election in distributed networks.