946 resultados para Equatorial Guinea
Resumo:
Marine sediments harbor an enormous quantity of microorganisms, including a multitude of novel species. The habitable zone of the marine sediment column begins at the sediment-water interface and probably extends to depths of several thousands of meters. Studies of the microbial diversity in this ecosystem have mostly relied on molecular biological techniques. We used a complementary method - analysis of intact polar membrane lipids - to characterize the in-situ microbial community in sediments covering a wide range of environmental conditions from Peru Margin, Equatorial Pacific, Hydrate Ridge, and Juan de Fuca Ridge. Bacterial and eukaryotic phospholipids were only detected in surface sediments from the Peru Margin. In contrast, deeply buried sediments, independent of their geographic location, were dominated by archaeal diether and tetraether lipids with various polar head groups and core lipids. We compared ring distributions of archaeal tetraether lipids derived from polar glycosidic precursors with those that are present as core lipids. The distributions of these related compound pools were distinct, suggestive of different archaeal sources, i.e., the polar compounds derive from sedimentary communities and the core lipids are fossil remnants from planktonic communities with possible admixtures of decayed sedimentary archaea. This in-situ production of distinct archaeal lipid populations potentially affects applications of the TEX86 paleotemperature proxy as demonstrated by offsets in reconstructed temperatures between both pools. We evaluated how varying cell and lipid stabilities will influence the sedimentary pool by using a box-model. The results are consistent with (i) a requirement of continuous inputs of freshly synthesized lipids in subsurface sediments for explaining the observed distribution of intact polar lipids, and (ii) decreasing lipid inputs with increasing burial depth.
Resumo:
Productivity at six core locations in the eastern equatorial Pacific (EEP) was reconstructed with a benthic foraminiferal transfer function. The core records show strong regionality, especially where affected by Peru margin upwelling of deeper Equatorial Undercurrent Water (EUC) (originally coming from the subantarctic). This "Peru margin" record differs from that seen along the equator where divergence leads to shallow upwelling, and it is generally inverse to that seen in cores outside the areas of equatorial upwelling. Principal components analysis shows that the main productivity pattern correlates well to the global oxygen isotope record and has lowest values during isotope stages 2 and 4. In addition to this, equatorial cores show a higher frequency pattern of variation which becomes much more pronounced during MIS 3 and 2. The reconstructions based on benthic foraminifera were tested against those from nonaccumulation rate based inorganic chemical proxies of export production. These were found to correlate well in the region influenced by Peru upwelling, and also to share common features for sites along the equator. All the nonaccumulation rate based paleotracers are consistent with one another and differ from accumulation rate derived proxies. The differences between the two classes of paleotracers may result from uncertainties in calculating actual biogenic fluxes since 230Th-normalized results conform more to those we obtained. Analysis of planktonic carbon isotope values for the EEP, and their comparison to the record of the Pacific subantarctic, indicates that the subantarctic contribution to the EUC was reduced during MIS 3 and 2.
Meteorological observations during PHILADELPHIA cruise from Guinea to Suriname started at 1759-01-23
Resumo:
High resolution pore-water dissolved Ba concentration-depth profiles were determined at seven sites across an Equatorial Pacific productivity gradient from 12°S to 9°N, at 140°W. These data are important for understanding the physical, chemical, and biological controls on Ba recycling in the ocean, and for evaluating the paleo-oceanographic significance of Ba content in central Equatorial Pacific sediments. Pore-water Ba concentrations at all sites are higher than in the overlying bottom water, leading to a diffusive flux of Ba into the ocean. A pronounced subsurface concentration maximum exceeding barite solubility characterizes the dissolved Ba pore-water profiles, suggesting that the Ba regenerated in the upper few millimeters of sediment is not controlled by barite solubility. A few centimeters down-core Ba concentrations reach a relatively constant value of approximately barite saturation. The benthic Ba flux shows a clear zonal trend, with a maximum between 2°S and 2°N, most probably due to higher productivity at the equatorial divergence zone, and with lowest values at the southern and northern extremes of the transect. The dissolved Ba flux between 2°S and 2°N is ~30 nmol/cm**2 yr and drops to 6 nmol/cm**2 yr at 12°S. Even the lowest fluxes are significantly higher than those previously reported for the open ocean. In the Equatorial Pacific the calculated Ba recycling efficiency is about 70%. Thus, ~30% of the particulate Ba flux to the deep ocean is preserved in the sediments, compared with less than 1% for organic carbon and ~5% for biogenic silica. Mass balance calculation of the oceanic Ba cycle, using a two-box model, implies benthic Ba fluxes similar to those reported here for a steady-state ocean.
Resumo:
Oceanic anoxic event 2 (OAE-2) occurring during the Cenomanian/Turonian (C/T) transition is evident from a globally recognized positive stable carbon isotopic excursion and is thought to represent one of the most extreme carbon cycle perturbations of the last 100 Myr. However, the impact of this major perturbation on and interaction with global climate remains unclear. Here we report new high-resolution records of sea surface temperature (SST) based on TEX86 and d 18O of excellently preserved planktic foraminifera and stable organic carbon isotopes across the C/T transition from black shales located offshore Suriname/French Guiana (Demerara Rise, Ocean Drilling Program Leg 207 Site 1260) and offshore Senegal (Cape Verde Basin, Deep Sea Drilling Project Leg 41 Site 367). At Site 1260, where both SST proxy records can be determined, a good match between conservative SST estimates from TEX86 and d 18O is observed. We find that late Cenomanian SSTs in the equatorial Atlantic Ocean (33°C) were substantially warmer than today (27°-29°C) and that the onset of OAE-2 coincided with a rapid shift to an even warmer (35°-36°C) regime. Within the early stages of the OAE a marked (4°C) cooling to temperatures lower than pre-OAE conditions is observed. However, well before the termination of OAE-2 the warm regime was reestablished and persisted into the Turonian. Our findings corroborate the view that the C/T transition represents the onset of the interval of peak Cretaceous warmth. More importantly, they are consistent with the hypotheses that mid-Cretaceous warmth can be attributed to high levels of atmospheric carbon dioxide (CO2) and that major OAEs were capable of triggering global cooling through the negative feedback effect of organic carbon-burial-led CO2 sequestration. Evidently, however, the factors that gave rise to the observed shift to a warmer climate regime at the onset of OAE-2 were sufficiently powerful that they were only briefly counterbalanced by the high rates of carbon burial attained during even the most extreme interval of organic carbon burial in the last 100 Myr.
Resumo:
Quantitative analyses of selected calcareous nannofossils in deep-sea sections recovered from the paleo-equatorial Pacific (ODP Leg 199) provide new information about biostratigraphy, biochronology and the evolutionary history of calcareous nannofossils across the Paleocene/Eocene transition interval. The sediment cores from ODP Leg 199 represent the first continuous Paleocene/Eocene boundary sections ever to be sampled in the central equatorial Pacific Ocean. Calcareous nannofossil assemblages are studied to document the distribution of biostratigraphically useful taxa such as Ericsonia, Discoaster, Fasciculithus, Rhomboaster and Tribrachiatus. Focus is given to the evolution of the Rhomboaster-Tribrachiatus lineage in the lower Eocene interval at Site 1215, and on the stratigraphic relationship of these taxa relative to species in the genus Fasciculithus. Critical intervals of North Atlantic DSDP Site 550 have also been re-examined. The Tribrachiatus digitalis morphotype was described at Site 550 from an interval affected by down-hole contamination, partly originating from within the Tribrachiatus orthostylus range. The T. digitalis morphotype represents an evolutionary transitional form between T. contortus and T. orthostylus, entering the stratigraphic record within the range of the former species and disappearing within the lower part of the range of the latter species. The subzonal subdivision of Zone NP10 hence collapses. Lithological and colour variability reflecting orbital cyclicity occur in the lower Eocene of Site 1215, permitting a relative astronomical age calibration of the Tribrachiatus taxa. The distinct Rhomboaster spp.-Discoaster araneus association also occurs in the paleo-equatorial Pacific Ocean, together with a marked decrease in diversity of Fasciculithus spp. Site 1220 reveals a short peak abundance of Thoracosphaera spp. just above the P/E boundary interval, which probably reflects a stressed surface water environment.
Resumo:
Abundance distribution and cellular characteristics of picophytoplankton were studied in two distinct regions of the equatorial Pacific: the western warm pool (0°, 167°E), where oligotrophic conditions prevail, and the equatorial upwelling at 150°W characterized by high-nutrient low-chlorophyll (HNLC) conditions. The study was done in September-October 1994 during abnormally warm conditions. Populations of Prochlorococcus, orange fluorescing Synechococcus and picoeukaryotes were enumerated by flow cytometry. Pigment concentrations were studied by spectrofluorometry. In the warm pool, Prochlorococcus were clearly the dominant organisms in terms of cell abundance, estimated carbon biomass and measured pigment concentration. Integrated concentrations of Prochlorococcus, Synechococcus and picoeukaryotes were 1.5x10**13, 1.3x10**11 and 1.5x10**11 cells/m**2, respectively. Integrated estimated carbon biomass of picophytoplankton was 1 g/m**2, and the respective contributions of each group to the biomass were 69, 3 and 28%. In the HNLC waters, Prochlorococcus cells were slightly less numerous than in the warm pool, whereas the other groups were several times more abundant (from 3 to 5 times). Abundance of Prochlorococcus, Synechococcus and picoeukaryotes were 1.2x10**13, 6.2x10**11 and 5.1x10**11 cells/m**2, respectively. The integrated biomass was 1.9 g C/m**2. Prochlorococcus was again the dominant group in terms of abundance and biomass (chlorophyll, carbon); the respective contributions of each group to the carbon biomass were 58, 7 and 35%. In the warm pool the total chlorophyll biomass was 28 mg/m**2, 57% of which was divinyl chlorophyll a. In the HNLC waters, the total chlorophyll biomass was 38 mg/m**2, 44% of which was divinyl chlorophyll a. Estimates of Prochlorococcus, Synechococcus and picoeukaryotes cell size were made in both hydrological conditions.
Resumo:
Radiocarbon age differences for pairs of coexisting late glacial age benthic and planktic foraminifera shells handpicked from 10 sediment samples from a core from a depth of 2.8 km in the western equatorial Pacific are not significantly different from that of 1600 years calculated from measurements on prenuclear seawater. This places a lower limit on the depth of the interface for the hypothetical radiocarbon-depleted glacial age seawater reservoir required to explain the 190 per mil drop in the 14C/C for atmospheric CO2, which occurred during the mystery interval (17.5 to 14.5 calendar years ago). These measurements restrict the volume of this reservoir to be no more than 35% that of the ocean. Further, 14C measurements on a single Last Glacial Maximum age sample from a central equatorial Pacific core from a depth of 4.4 km water fail to reveal evidence for the required 5- to 7-kyr age difference between benthic and planktic foraminifera shells if the isolated reservoir occupied only one third of the ocean. Nor does the 13C record for benthic forams from this abyssal core yield any evidence for the excess respiration CO2 expected to be produced during thousands of years of isolation. Nor, as indicated by the presence of benthic foraminifera, was the dissolved oxygen used up in this abyssal water.
Resumo:
The global warming trend of the latest Oligocene was interrupted by several cooling events associated with Antarctic glaciations. These cooling events affected surface water productivity and plankton assemblages. Well-preserved radiolarians were obtained from upper Oligocene to lower Miocene sediments at Ocean Drilling Program (ODP) Leg 199 Sites 1218 and 1219 in the equatorial Pacific, and 110 radiolarian species were identified. Four episodes of significant radiolarian faunal changes were identified: middle late Oligocene (27.5 to 27.3 Ma), latest Oligocene (24.4 Ma), earliest Miocene (23.3 Ma), and middle early Miocene (21.6 Ma). These four episodes approximately coincide with increases and decreases of biogenic silica accumulation rates and increases in delta18O values coded as "Oi" and "Mi" events. These data indicate that Antarctic glaciations were associated with change of siliceous sedimentation patterns and faunal changes in the equatorial Pacific. Radiolarian fauna was divided into three assemblages based on variations in radiolarian productivity, species richness and the composition of dominant species: a late Oligocene assemblage (27.6 to 24.4 Ma), a transitional assemblage (24.4 to 23.3 Ma) and an early Miocene assemblage (23.3 to 21.2 Ma). The late Oligocene assemblage is characterized by relatively high productivity, low species richness and four dominant species of Tholospyris anthophora, Stichocorys subligata, Lophocyrtis nomas and Lithelius spp. The transitional assemblage represents relatively low values of productivity and species richness, and consists of three dominant species of T. anthophora, S. subligata and L. nomas. The characteristics of the early Miocene assemblage are relatively low productivity, but high species richness. The two dominant species present in this assemblage are T. anthophora and Cyrtocapsella tetrapera. The most significant faunal turnover of radiolarians is marked at the boundary between the transitional/early Miocene assemblages.
Resumo:
High-resolution records of glacial-interglacial variations in biogenic carbonate, opal, and detritus (derived from non-destructive core log measurements of density, P-wave velocity and color; r >= 0.9) from 15 sediment sites in the eastern equatorial (sampling resolution is ~1 kyr) clear response to eccentricity and precession forcing. For the Peru Basin, we generate a high-resolution (21 kyr increment) orbitally-based chronology for the last 1.3 Ma. Spectral analysis indicates that the 100 kyr cycle became dominant at roughly 1.2 Ma, 200-300 kyr earlier than reported for other paleoclimatic records. The response to orbital forcing is weaker since the Mid-Brunhes Dissolution Event (at 400 ka). A west-east reconstruction of biogenic sedimentation in the Peru Basin (four cores; 91-85°W) distinguishes equatorial and coastal upwelling systems in the western and eastern sites, respectively. A north-south reconstruction perpendicular to the equatorial upwelling system (11 cores, 11°N-°3S) shows high carbonate contents (>= 50%) between 6°N and 4°S and highly variable opal contents between 2°N and 4°S. Carbonate cycles B-6, B-8, B-10, B-12, B-14, M-2, and M-6 are well developed with B-10 (430 ka) as the most prominent cycle. Carbonate highs during glacials and glacial-interglacial transitions extended up to 400 km north and south compared to interglacial or interglacial^glacial carbonate lows. Our reconstruction thus favors glacial-interglacial expansion and contraction of the equatorial upwelling system rather than shifting north or south. Elevated accumulation rates are documented near the equator from 6°N to 4°S and from 2°N to 4°S for carbonate and opal, respectively. Accumulation rates are higher during glacials and glacial-interglacial transitions in all cores, whereas increased dissolution is concentrated on Peru Basin sediments close to the carbonate compensation depth and occurred during interglacials or interglacial-glacial transitions.
Resumo:
Qualitative and quantitative evaluation of the finely dispersed fraction of particulate organic matter in sea water is given. It is demonstrated that in the euphotic zone of high productivity waters this fraction constitutes 86%, in waters with low productivity 61%, and in deep waters (>200 m) 53% of the organic carbon in particulate matter. Formation of the finely dispersed fraction and its role in distribution of energy in the detrital food chain of the ecosystem are discussed.