927 resultados para Enzyme digestion


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Chronic blockade of the renin angiotensin system became possible when orally active inhibitors of angiotensin converting enzyme, the enzyme which catalyzes the transformation of angiotensin I into angiotensin II, were synthetized. Two compounds, captopril and enalapril, have been investigated in clinical studies. The decrease of the pressor response to exogenous angiotensin I and of the circulating levels of angiotensin II following administration of these inhibitors has been demonstrated to be directly related to the degree of suppression of plasma angiotensin converting enzyme activity. These inhibitors have been shown to normalize blood pressure alone in some hypertensive patients whereas in many others, satisfactory blood pressure control can be achieved only after the addition of a diuretic. Captopril and enalapril also markedly improve cardiac function of patients with chronic congestive heart failure. Chronic blockade of the renin angiotensin system has therefore provided an interesting new approach to the treatment of clinical hypertension and heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Specific metabolic pathways are activated by different nutrients to adapt the organism to available resources. Although essential, these mechanisms are incompletely defined. Here, we report that medium-chain fatty acids contained in coconut oil, a major source of dietary fat, induce the liver ω-oxidation genes Cyp4a10 and Cyp4a14 to increase the production of dicarboxylic fatty acids. Furthermore, these activate all ω- and β-oxidation pathways through peroxisome proliferator activated receptor (PPAR) α and PPARγ, an activation loop normally kept under control by dicarboxylic fatty acid degradation by the peroxisomal enzyme L-PBE. Indeed, L-pbe(-/-) mice fed coconut oil overaccumulate dicarboxylic fatty acids, which activate all fatty acid oxidation pathways and lead to liver inflammation, fibrosis, and death. Thus, the correct homeostasis of dicarboxylic fatty acids is a means to regulate the efficient utilization of ingested medium-chain fatty acids, and its deregulation exemplifies the intricate relationship between impaired metabolism and inflammation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 5a-reductase of Penicillium decumbens ATCC 10436 was used as a model for the mammalian enzyme to investigate the mechanism of reduction of testosterone to 5adihydrotestosterone . The purpose of this study was to search for specific 5a-reductase inhibitors which antagonize prostate cancer . In a whole-cell biotransformation mode, this organism reduced testosterone (1) to 5a-dihydrosteroids (8) and 5aandrostane- 3, 17-dione (9) in yields of 28% and 37% respectively. Control experiments have shown that 5aandrostane- 3, 17-dione (9) can be produced from the corresponding alcohol (8) in a subsequent reaction separate from that catalysed by the 5a-reductase enzyme . Androst-4- ene-3, 17-dione (2) is reduced to give only (9) with a recovery of 80% The stereochemistry of the reduction was determined by 500 MHz ^H NMR analysis of the products resulting from the deuterium labelled substrates. The results were obtained by an analysis of the NOE difference spectra, double-quantum filtered phase sensitive COSY 2-D spectra, and ^^c-Ir 2-D shift correlation spectra of deuterium labelled products. According to the unambiguous assignment of the signals due to H-4a and H-4Ii in 5a-dihydro steroids, the NMR data show clearly that addition of hydrogen to the 4{5)K bond has occurred in a trans manner at positions 413 and 5a. To Study the reduction mechanism of this enzyme, several substrates were prepared as following; 3-methyleneandrost-4-en- 17fi-ol(3), androst-4-en-17i5-ol(5) , androst-4-en-3ii, 17fi-diol (6) and 4, 5ii-epoxyandrostane-3, 17-dione (7) . Results suggest that this enzyme system requires an oxygen atom at the 3-position of the steroid in order to bind the substrate. Furthermore, the mechanism of this 5a-reductase may proceed via direct addition of hydrogen at the 4,5 position without involvement of a carbonyl group as an intermediate.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Adenoviruses are non-enveloped icosahedral-shaped particles which possess a double-stranded DNA genome. Currently, nearly 100 serotypes of adenoviruses have been identified, 48 of which are of human origin. Bovine adenoviruses (BAVs), causing both mild respiratory and/or enteral diseases in cattle, have been reported in many countries all over the world. Currently, nine serotypes of SAVs have been isolated which have been placed into two subgroups based on a number of characteristics which include complement fixation tests as well as the ability to replicate in various cell lines. Bovine adenovirus type 2 (BAV2), belonging to subgroup I, is able to cause pneumonia as well as pneumonic-like symptoms in calves. In this study, the genome of BAV2 (strain No. 19) was subcloned into the plasmid vector pUC19. In total, 16 plasmids were constructed; three carry internal San fragments (spanning 3.1 to 65.2% ), and 10 carry internal Pstl fragments (spanning 4.9 to 97.4%), of the viral genome. Each of these plasmids was analyzed using twelve restriction endonucleases; BamHI, CiaI, EcoRl, HiOOlll, Kpnl, Noll, NS(N, Ps~, Pvul, Saj, Xbal, and Xhol. Terminal end fragments were also cloned and analyzed, sUbsequent to the removal of the 5' terminal protein, in the form of 2 BamHI B fragments, cloned in opposite orientations (spanning 0 to 18.1°k), and one Pstll fragment (spanning 97.4 to 1000/0). These cloned fragments, along with two other plasmids previously constructed carrying internal EcoRI fragments (spanning 20.6 to 90.5%), were then used to construct a detailed physical restriction map using the twelve restriction endonucleases, as well as to estimate the size of the genome for BAV2(32.5 Kbp). The DNA sequences of the early region 1 (E1) and hexon-associated gene (protein IX) have also been determined. The amino acid sequences of four open reading frames (ORFs) have been compared to those of the E1 proteins and protein IX from other Ads.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cloned dihydrofolate reductase gene of Saccharomyces cerevisiae (DFR 1) is expressed in Escherichia coli. Bacterial strain JF1754 transformed with plasmids containing DFR 1 is at least 5X more resistant to inhibition by the folate antagonist trimethoprim. Expression of yeast DFR 1 in E. coli suggests it is likely that the gene lacks intervening sequences. The 1.8 kbp DNA fragment encoding yeast dhfr activity probably has its own promotor, as the gene is expressed in both orientations in E. coli. Expression of the yeast dhfr gene cloned into M13 viral vectors allowed positive selection of DFR 1 - M13 bacterial transfectants in medium supplemented with trimethoprim. A series of nested deletions generated by nuclease Bal 31 digestion and by restriction endonuclease cleavage of plasmids containing DFR 1 physically mapped the gene to a 930 bp region between the Pst 1 and Sal 1 cut sites. This is consistent with the 21,000 molecular weight attributed to yeast dhfr in previous reports. From preliminary DNA sequence analysis of the dhfr DNA fragment the 3' terminus of DFR 1 was assigned to a position 27 nucleotides from the Eco Rl cut site on the Bam Hi - Eco Rl DNA segment. Several putative yeast transcription termination consensus sequences were identified 3' to the opal stop codon. DFR 1 is expressed in yeast and it confers resistance to the antifolate methotrexate when the gene is present in 2 - 10 copies per cell. Plasmid-dependent resistance to methotrexate is also observed in a rad 6 background although the effect is somewhat less than that conferred to wild-type or rad 18 cells. Integration of DFR 1 into the yeast genome showed an intermediate sensitivity to folate antagonists. This may suggest a gene dosage effect. No change in petite induction in these yeast strains was observed in transformed cells containing yeast dhfr plasmids. The sensitivity of rad 6 , rad 18 and wild-type cell populations to trimethoprim were unaffected by the presence of DFR 1 in transformants. Moreover, trimethoprim did not induce petites in any strain tested, which normally results if dhfr is inhibited by other antifolates such as methotrexate. This may suggest that the dhfr enzyme is not the only possible target of trimethoprim in yeast. rad 6 mutants showed a very low level of spontaneous petite formation. Methotrexate failed to induce respiratory deficient mutants in this strain which suggested that rad 6 might be an obligate grande. However, ethidium bromide induced petites to a level approximately 50% of that exhibited by wild-type and rad 18 strains.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Phosphoenolpyruvate carboxylase (PEPC) and malic enzyme activities in soluble protein extracts of Avena coleoptiles were investigated to determine whether their kinetics were consistent with a role in cytosol pH regulation. Malic enzyme activity was specific for NADP+ and Mn2+. Maximal labelled product formation from [14C]-substrates required the presence of all coenzymes, cofactors and substrates. Plots of rate versus malate concentration, and linear transformations there- 2 of, indicated typical Michaelis-Menten kinetics at non-saturating malate levels and substrate inhibition at higher malate levels. pH increases between 6.5 and 7.25 increased near-optimal activity, decreased the degree of substrate inhibition and the Kmapp(Mn2+) but did not affect the Vmax or Kmapp(malate). Transformed data of PEPC activity demonstrated non-linear plots indicative of non-Michaelian kinetics. pH increases between 7.0 and 7.6 increased the Vmax and decreased the Km app (Mg2+) but did not affect the Kmapp(PEP). Various carboxylic acids and phosphorylated sugars inhibited PEPC and malic enzyme activities, and these effects decreased with pH increases. Metabolite inhibited malic enzyme activity was non-competitive and resulted mainly from Mn2+ chelation. In contrast, metabolite inhibited PEPC activity was unique for each compound tested, being variously dependent on the PEP concentration and the pH employed. These results indicate that fluctuations in pH and metabolite levels affect PEPC and malic enzyme activities similarly and that 3 the in vitro properties of PEPC are consistent with its proposed role in a pH-stat, whereas the in vitro properties of the malic enzyme cannot be interpreted in terms of a role in pH regulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Floral nectar is thought to be the primary carbohydrate source for most dipteran species. However, it has been shown that black flies (Burgin & Hunter 1997 a,b,c), mosquitoes (Foster 1995; Burkett et al. 1999; Russell & Hunter 2002), deer flies (Magnarelli & Burger 1984; Janzen & Hunter 1998; Ossowski & Hunter 2000), horse flies (Schutz & Gaugler 1989; Hunter & Ossowski 1999) and sand flies (MacVicker et al. 1990; Wallbanks et al. 1990; Cameron et al. 1992, 1995; Schlein & Jacobson 1994, 1999; Hamilton & EI Naiem 2000) feed on homopteran honeydew as well as floral nectar. Prior to 1997 floral nectar was thought to be the main source of carbohydrates for black flies. However, Burgin & Hunter (1 997a) demonstrated that up to 35% of black flies had recently consumed meals of homo pte ran honeydew. This information has necessitated a re-assessment of many life history aspects of black flies. Attempts are being made to examine the effects of nectar versus honeydew on black fly fecundity and parasite transmission (Hazzard 2003). Recently, Stanfield and Hunter (unpublished data) have shown that in female black flies, honeydew sugars produce flights of longer distance and duration than do nectar sugars. This thesis examines two aspects of black fly biology as it relates to sugar meal consumption. First, the effects of honeydew and nectar on black fly longevity are examined. Second, the proximate causation behind longer flight performances in honeydew-fed flies will be examined. The comparison between these two sources is important because nectar is composed of mainly simple sugars (monosaccharides and disaccharides) whereas honeydew is composed of both simple and complex sugars (including trisaccharides and tetrasaccharides ).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Les sites apuriniques/apyrimidiniques (AP) sont des sites de l’ADN hautement mutagène. Les dommages au niveau de ces sites peuvent survenir spontanément ou être induits par une variété d’agents. Chez l’humain, les sites AP sont réparés principalement par APE1, une enzyme de réparation de l’ADN qui fait partie de la voie de réparation par excision de base (BER). APE1 est une enzyme multifonctionnelle; c’est une AP endonucléase, 3’-diestérase et un facteur redox impliqué dans l’activation des facteurs de transcription. Récemment, il a été démontré qu’APE1 interagit avec l’enzyme glycolytique GAPDH. Cette interaction induit l’activation d’APE1 par réduction. En outre, la délétion du gène GAPDH sensibilise les cellules aux agents endommageant l’ADN, induit une augmentation de formation spontanée des sites AP et réduit la prolifération cellulaire. A partir de toutes ces données, il était donc intéressant d’étudier l’effet de la délétion de GAPDH sur la progression du cycle cellulaire, sur la distribution cellulaire d’APE1 et d’identifier la cystéine(s) d’APE1 cible(s) de la réduction par GAPDH. Nos travaux de recherche ont montré que la déficience en GAPDH cause un arrêt du cycle cellulaire en phase G1. Cet arrêt est probablement dû à l’accumulation des dommages engendrant un retard au cours duquel la cellule pourra réparer son ADN. De plus, nous avons observé des foci nucléaires dans les cellules déficientes en GAPDH qui peuvent représenter des agrégats d’APE1 sous sa forme oxydée ou bien des focis de la protéine inactive au niveau des lésions d’ADN. Nous avons utilisé la mutagénèse dirigée pour créer des mutants (Cys en Ala) des sept cystéines d’APE1 qui ont été cloné dans un vecteur d’expression dans les cellules de mammifères. Nous émettons l’hypothèse qu’au moins un mutant ou plus va être résistant à l’inactivation par oxydation puisque l’alanine ne peut pas s’engager dans la formation des ponts disulfures. Par conséquent, on anticipe que l’expression de ce mutant dans les cellules déficientes en GAPDH pourrait restaurer une distribution cellulaire normale de APE1, libérerait les cellules de l’arrêt en phase G1 et diminuerait la sensibilité aux agents endommageant l’ADN. En conclusion, il semble que GAPDH, en préservant l’activité d’APE1, joue un nouveau rôle pour maintenir l’intégrité génomique des cellules aussi bien dans les conditions normales qu’en réponse au stress oxydatif.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Mémoire numérisé par la Division de la gestion de documents et des archives de l'Université de Montréal