838 resultados para Energy Harvesting, Convertitori di potenza, Maximum Power Point Tracking, Applicazioni low power


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Recently, research on energy harvesting has increased substantially. Many researchers have concentrated their efforts to find the best configuration for these systems and to optimize their output power. In the process of energy harvesting, the electric energy is obtained by converting mechanics energy created by an environment vibration source by a transducer, for example, a thin piezoceramic film. That vibration source is, for example, a beam suffering some mechanic force able to generate a vibration in it, an oscillating beam is the best properly used example. Different mechanisms of electromechanical coupling have been developed to harvesting devices, and a particular interest has been given to the use of models that transform the mechanical vibration into electrical current using a piezoelectric element. In this paper we propose a model to energy harvesting from vibrations, from an oscillating beam, including non-linearities in the piezoelectric coupling and a non-ideal excitation in the material. From this model, it was developed a system to obtain some results about the harvested power by the material. It was demonstrated that the power captured was influenced by the effect of the nonlinearities of the piezoelectric coupling, modifying the system dynamic behavior

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pós-graduação em Engenharia Mecânica - FEIS

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents an analysis of an irreversible Otto cycle aiming to optimize the net power through ECOP and ecological function. The studied cycle operates between two thermal reservoirs of infinite thermal capacity, with internal irreversibilities derived from non-isentropic behavior of compression and expansion processes, irreversibilities from thermal resistance in heat exchangers and heat leakage from the high temperature reservoir to the low temperature reservoir. Analytical expressions are applied for the power outputs optimized by the ECOP, by the ecological function and by the maximum power criteria, in conjunction with a graphic analysis, in which some cycle operation parameters are analyzed for an increased comprehension of the effects of the irreversibilities in the optimized power.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Earth receives annually 1,5.1018 kWh of solar energy, which corresponds to 1000 times the world energy consumption in this period. This fact comes out that, besides being responsible for the maintenance of life on Earth, the solar radiation is in an inexhaustible energy source, with an enormous potential for use by systems capture and conversion into another form of energy. In many applications of low power systems that convert light directly into electricity, called photovoltaic advantageously replace other means of production processes, where its distribution is very significant. The determination of the power generated by such a system is of paramount importance for the design energy of its implementation and evaluation of the system itself. This study aims to determine a relationship between the maximum power generated by solar photovoltaic and characteristic parameters of the generator. This relationship allows to evaluate the performance of such a system. For simulations of the developed equations were used 3 photovoltaic modules with an output of 100 Wp each, and data collection was performed during one year by enrolling in addition to meteorological data, solar irradiance incident on the modules.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Membranes of Poly(2,5-benzimidazole) (ABPBI), prepared by polycondensation in polyphosphoric acid, were characterized from the fuel cell application point of view: mechanical properties of the membranes for different acid doping levels, thermal stability, permeability for the different gases/vapors susceptible of use in the cell (hydrogen, oxygen, methanol and ethanol), electro-osmotic water drag coefficient, oxidation stability to hydroxyl radicals, phosphoric acid leaching rate and, finally, in-plane membrane conductivity. ABPBI membranes presented an excellent thermal stability, above 500 degrees C in oxygen, suitable mechanical properties for high phosphoric acid doping levels, a low methanol and ethanol limiting permeation currents, and oxygen permeability compared to Nafion membranes, and a low phosphoric acid leaching rate when exposed to water vapor. On the contrary, hydrogen permeation current was higher than that of Nafion, and the chemical stability was very limited. Membrane conductivity achieved 0.07 S cm(-1) after equilibration with a humid environment. Fuel cell tests showed reasonable good performances, with a maximum power peak of 170 mW cm(-2) for H-2/air at 170 degrees C operating under a humidified hydrogen stream, 39.9 mW cm(-2) for CH3OH/O-2 at 200 degrees C for a methanol/water weight ratio of 1: 2, and 31.5 mW cm(-2) for CH3CH2OH/O-2 at the same conditions than for methanol. (C) 2012 The Electrochemical Society. [DOI: 10.1149/2.014207jes] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The performance of an ABPBI-based High Temperature H-2/O-2 PEMFC system was studied under different experimental conditions. Increasing the temperature from 130 to 170 degrees C improved the cell performance, even though further increase was not beneficial for the system. Humidification of the H-2 stream ameliorated this behaviour, even though operating above 170 degrees C is not advisable in terms of cell performance. A significant electrolyte dehydration seems to negatively affect the fuel cell performance, especially in the case of the anode. In the presence of 2% vol. CO in the H-2 stream, the temperature exerted a positive effect on the cell performance, reducing the strong adsorption of this poison on the platinum sites. Moreover, humidification of the H-2 + CO stream increased the maximum power densities of the cell, further alleviating the CO poisoning effects. Actual CO-O-2 fuel cell results confirmed the significant beneficial effect of the relative humidity on the kinetics of the CO oxidation process. Copyright (C) 2011, Hydrogen Energy Publications, LLC. Published by Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigates the promoting effect of PtSnIr/C (1:1:1) electrocatalyst anode, prepared by polymeric precursor method, on the ethanol oxidation reaction in a direct ethanol fuel cell (DEFC). All of the materials used were 20% metal m/m on carbon. X-ray photoelectron spectroscopy (XPS) analysis showed the presence of Pt, PtOH2, PtO2, SnO2 and IrO2 at the electrocatalyst surface, indicating a possible decorated particle structure. X-ray diffractometry (XRD) analysis indicated metallic Pt and Ir as well as the formation of an alloy with Sn. Using the PtSnIr/C electrocatalyst prepared here with two times lower loading of Pt than PtSn/C E-tek electrocatalyst, it was possible to obtain the same maximum power density found for the commercial material. The main reaction product was acetic acid probably due to the presence of oxides, in this point the bifunctional mechanism is predominant, but an electronic effect should not be discarded.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

La tesi verte sulle procedure di verifica delle prestazioni di potenza degli aerogeneratori. Si è realizzato un test di verifica su una centrale eolica in esercizio, sito nella provincia di Salerno, utilizzando diverse metodologie di verifica, delineate dai più importanti centri di ricerca internazionali, al fine di valutare l'affidabilità di ognuna di esse.