897 resultados para Endothelial nitric oxide synthase
Resumo:
To investigate effects of nitric oxide on cellular radio-sensitivity, three human glioma cell lines, i.e. A172, A172 transfected green fluorescence protein (EGFP) gene (EA172) and A172 transfected inducible nitric oxide synthesis (iNOS) gene (iA72), were irradiated by C-12(6+) ions to 0, 1 or My. Productions of nitric oxide and glutathione (GSH) in A172, EA172 and iA172 were determined by chemical methods, cell cycle was analyzed by flow cytometry at the 24th hour after irradiation, and survival fraction of the cells was measured by colorimetric MTT assay at the 5th day after irradiation. The results showed that the concentrations of nitric oxide and GSH in iA172 were significantly higher than in A172 and EA172; the G(2)/M stage arrest induced by the C-12(6+) ion irradiation was observed in A172 and EA172 but not in iA172 at the 24th hour after exposure; and the survival fraction of iA172 was higher than that of EA172 and iA172. Data suggest that the radio-sensitivity of the A172 was reduced after the iNOS gene transfection. The increase of GSH production and the change of cellular signals such as the cell cycle control induced by nitric oxide may be involved in this radio-resistance.
Resumo:
The coadsorption of NO and O-2 on Ag(110) surface has been studied by X-ray photoelectron spectroscopy (XPS), ultraviolet photoelectron spectroscopy (UPS) and in situ Raman spectroscopy. The existence of oxygen enhances the adsorption of NO by forming the NOx species, that is, NO2 and NO3, and the NO in turn as a promotor facilitates the cleavage of the dioxygen bond, forming the surface atomic oxygen species having the same spectral characteristics as those produced using oxygen at high pressure. The oxygen species generated by the interaction is composed of two parts. One is produced directly by the decomposition of surface NO-O-2 complex at ca 625 K, which raised an O 1s feature at 530.5 eV and is absent at ca 800 K, while the another with an O 1s binding energy of 529.2 eV emerges at higher temperatures and shows similar properties as the reported gamma-state oxygen which bound tightly on restructured silver surface. The exposure to NO and O-2 causes noticeable changes in the morphology of the Ag(110) surface and the flat terraces superseded by small (ca 0.1 mu m) pits, and particles with typical diameters of a few micrometres were formed at elevated temperatures. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Luis A.J. Mur, I. Edi Santosa, Lucas J.J. Laarhoven, Nicholas J. Holton, Frans J.M. Harren and Aileen R. Smith (2005). Laser photoacoustic detection allows in planta detection of nitric oxide in tobacco following challenge with avirulent and virulent pseudomonas syringae pathovars. Plant Physiology, 138(3), 1247-1258. Sponsorship: BBSRC / EU RAE2008
Resumo:
Although the release of nitric oxide (NO) from biomaterials has been shown to reduce the foreign body response (FBR), the optimal NO release kinetics and doses remain unknown. Herein, polyurethane-coated wire substrates with varying NO release properties were implanted into porcine subcutaneous tissue for 3, 7, 21 and 42 d. Histological analysis revealed that materials with short NO release durations (i.e., 24 h) were insufficient to reduce the collagen capsule thickness at 3 and 6 weeks, whereas implants with longer release durations (i.e., 3 and 14 d) and greater NO payloads significantly reduced the collagen encapsulation at both 3 and 6 weeks. The acute inflammatory response was mitigated most notably by systems with the longest duration and greatest dose of NO release, supporting the notion that these properties are most critical in circumventing the FBR for subcutaneous biomedical applications (e.g., glucose sensors).
Resumo:
The in vivo glucose recovery of subcutaneously implanted nitric oxide (NO)-releasing microdialysis probes was evaluated in a rat model using saturated NO solutions to steadily release NO. Such methodology resulted in a constant NO flux of 162 pmol cm(-2) s(-1) from the probe membrane over 8 h of perfusion daily. The in vivo effects of enhanced localized NO were evaluated by monitoring glucose recovery over a 14 day period, with histological analysis thereafter. A difference in glucose recovery was observed starting at 7 days for probes releasing NO relative to controls. Histological analysis at 14 days revealed lessened inflammatory cell density at the probe surface and decreased capsule thickness. Collectively, the results suggest that intermittent sustained NO release from implant surfaces may improve glucose diffusion for subcutaneously implanted sensors by mitigating the foreign body reaction.
Resumo:
In vitro human tissue engineered human blood vessels (TEBV) that exhibit vasoactivity can be used to test human toxicity of pharmaceutical drug candidates prior to pre-clinical animal studies. TEBVs with 400-800 μM diameters were made by embedding human neonatal dermal fibroblasts or human bone marrow-derived mesenchymal stem cells in dense collagen gel. TEBVs were mechanically strong enough to allow endothelialization and perfusion at physiological shear stresses within 3 hours after fabrication. After 1 week of perfusion, TEBVs exhibited endothelial release of nitric oxide, phenylephrine-induced vasoconstriction, and acetylcholine-induced vasodilation, all of which were maintained up to 5 weeks in culture. Vasodilation was blocked with the addition of the nitric oxide synthase inhibitor L-N(G)-Nitroarginine methyl ester (L-NAME). TEBVs elicited reversible activation to acute inflammatory stimulation by TNF-α which had a transient effect upon acetylcholine-induced relaxation, and exhibited dose-dependent vasodilation in response to caffeine and theophylline. Treatment of TEBVs with 1 μM lovastatin for three days prior to addition of Tumor necrosis factor - α (TNF-α) blocked the injury response and maintained vasodilation. These results indicate the potential to develop a rapidly-producible, endothelialized TEBV for microphysiological systems capable of producing physiological responses to both pharmaceutical and immunological stimuli.
Resumo:
Background: Exhaled nitric oxide has been proposed as a marker for airway inflammation in asthma. The aim of this study was to compare exhaled nitric oxide levels with inflammatory cells and mediators in bronchoalveolar lavage fluid from asthmatic and normal children.
Methods: Children were recruited from elective surgical lists and a non-bronchoscopic bronchoalveolar lavage (BAL) was performed after induction of anaesthesia. Exhaled nitric oxide (parts per billion) was measured by two techniques: tidal breathing and restricted breath.
Results: Median (interquartile range) exhaled nitric oxide measured by restricted breath was increased in asthmatics compared with normal children (24.3 (10.5–66.5) v 9.7 (6.5–16.5), difference between medians 14.6 (95% CI 5.1 to 29.9), p=0.001). In asthmatic children exhaled nitric oxide correlated significantly with percentage eosinophils (r=0.78, p<0.001 (tidal breathing) and r=0.78, p<0.001 (restricted breath)) and with eosinophilic cationic protein (r=0.53, p<0.01 restricted breath)), but not with other inflammatory cells in the BAL fluid. The area under the receiver operator characteristic curves for the prediction of the presence of eosinophilic airways inflammation by exhaled nitric oxide (tidal and restricted) was 0.80 and 0.87, respectively.
Conclusions: Exhaled nitric oxide correlates closely with percentage eosinophils in BAL fluid in asthmatic children and is therefore likely to be a useful non-invasive marker of airway inflammation.
Resumo:
A key step in malignant progression is the acquired ability of tumour cells to escape immune-mediated lysis. A potential mechanism by which tumour cells avoid immune destruction involves the shedding of MHC Class I Chain-Related Protein A (MICA), a Natural Killer (NK) cell-activating ligand, from the tumour cell membrane. Hypoxia has been shown to cause increased MICA shedding; however, this hypoxia-induced effect can be attenuated by pharmacological activation of the cyclic guanosine monophosphate (cGMP)-dependent nitric oxide (NO)-signalling pathway in cancer cells. The primary objective of the present study was to determine whether treatment of tumour-bearing nude mice with the NO-mimetic glyceryl trinitrate (GTN) attenuates in vivo tumour growth and if so, whether this effect is dependent on the presence of an intact NK cell compartment. Results indicated that continuous transdermal administration of GTN (1.8 µg/h) can significantly attenuate the growth of transplanted human DU-145 prostate tumours but that this effect of GTN is lost in mice whose NK-cells have been depleted. Tumours and serum from the mice in this study were analysed to determine whether GTN treatment had any effect on the expression levels of proteins integral to the proposed MICA shedding mechanism; however, the results of these studies were inconclusive. As phosphodiesterase (PDE) inhibition represents a potential method to enhance NO-signalling, experiments were performed to determine whether treatment with the PDE5/6 inhibitor zaprinast could also attenuate hypoxia-induced MICA shedding and decrease in vivo growth of DU-145 tumours. Results demonstrated that treatment with zaprinast (10 mg/kg) significantly attenuates MICA shedding in DU-145 cancer cells and significantly decreases in vivo tumour growth. Taken together, the results of these experiments indicate that GTN attenuates tumour growth by sensitising tumour cells to innate immunity, likely by increasing membrane-associated tumour cell MICA levels through the reactivation of NO-signalling, and that zaprinast decreases tumour growth likely through a similar mechanism. These findings are important because they indicate that agents capable of reactivating NO-signalling, such as NO-mimetics and PDE inhibitors, can potentially be used as immunosensitisers in the treatment and/or prevention of cancer.