996 resultados para Endodontic cements
Resumo:
A detailed investigation has been conducted on core samples taken from 17 portland cement concrete pavements located in Iowa. The goal of the investigation was to help to clarify the root cause of the premature deterioration problem that has become evident since the early 1990s. Laboratory experiments were also conducted to evaluate how cement composition, mixing time, and admixtures could have influenced the occurrence of premature deterioration. The cements used in this study were selected in an attempt to cover the main compositional parameters pertinent to the construction industry in Iowa. The hardened air content determinations conducted during this study indicated that the pavements that exhibited premature deterioration often contained poor to marginal entrained-air void systems. In addition, petrographic studies indicated that sometimes the entrained-air void system had been marginal after mixing and placement of the pavement slab, while in other instances a marginal to adequate entrained-air void system had been filled with ettringite. The filling was most probably accelerated because of shrinkage cracking at the surface of the concrete pavements. The results of this study suggest that the durability—more sciecifically, the frost resistance—of the concrete pavements should be less than anticipated during the design stage of the pavements. Construction practices played a significant role in the premature deterioration problem. The pavements that exhibited premature distress also exhibited features that suggested poor mixing and poor control of aggregate grading. Segregation was very common in the cores extracted from the pavements that exhibited premature distress. This suggests that the vibrators on the paver were used to overcome a workability problem. Entrained-air voids formed in concrete mixtures experiencing these types of problems normally tend to be extremely coarse, and hence they can easily be lost during the paving process. This tends to leave the pavement with a low air content and a poor distribution of air voids. All of these features were consistent with a premature stiffening problem that drastically influenced the ability of the contractor to place the concrete mixture. Laboratory studies conducted during this project indicated that most premature stiffening problems can be directly attributed to the portland cement used on the project. The admixtures (class C fly ash and water reducer) tended to have only a minor influence on the premature stiffening problem when they were used at the dosage rates described in this study.
Resumo:
The chemistry of today’s concrete mixture designs is complicated by many variables, including multiple sources of aggregate and cements and a plethora of sometimes incompatible mineral and chemical admixtures. Concrete paving has undergone significant changes in recent years as new materials have been introduced into concrete mixtures. Supplementary cementitious materials such as fly ash and ground granulated blast furnace slag are now regularly used. In addition, many new admixtures that were not even available a few years ago now have widespread usage. Adding to the complexity are construction variables such as weather, mix delivery times, finishing practices, and pavement opening schedules. Mixture materials, mix design, and pavement construction are not isolated steps in the concrete paving process. Each affects and is affected by the other in ways that determine overall pavement quality and long-term performance. Equipment and procedures commonly used to test concrete materials and concrete pavements have not changed in decades, leaving serious gaps in our ability to understand and control the factors that determine concrete durability. The concrete paving community needs tests that will adequately characterize the materials, predict interactions, and monitor the properties of the concrete.
Resumo:
Severe environmental conditions, coupled with the routine use of deicing chemicals and increasing traffic volume, tend to place extreme demands on portland cement concrete (PCC) pavements. In most instances, engineers have been able to specify and build PCC pavements that met these challenges. However, there have also been reports of premature deterioration that could not be specifically attributed to a single cause. Modern concrete mixtures have evolved to become very complex chemical systems. The complexity can be attributed to both the number of ingredients used in any given mixture and the various types and sources of the ingredients supplied to any given project. Local environmental conditions can also influence the outcome of paving projects. This research project investigated important variables that impact the homogeneity and rheology of concrete mixtures. The project consisted of a field study and a laboratory study. The field study collected information from six different projects in Iowa. The information that was collected during the field study documented cementitious material properties, plastic concrete properties, and hardened concrete properties. The laboratory study was used to develop baseline mixture variability information for the field study. It also investigated plastic concrete properties using various new devices to evaluate rheology and mixing efficiency. In addition, the lab study evaluated a strategy for the optimization of mortar and concrete mixtures containing supplementary cementitious materials. The results of the field studies indicated that the quality management concrete (QMC) mixtures being placed in the state generally exhibited good uniformity and good to excellent workability. Hardened concrete properties (compressive strength and hardened air content) were also satisfactory. The uniformity of the raw cementitious materials that were used on the projects could not be monitored as closely as was desired by the investigators; however, the information that was gathered indicated that the bulk chemical composition of most materials streams was reasonably uniform. Specific minerals phases in the cementitious materials were less uniform than the bulk chemical composition. The results of the laboratory study indicated that ternary mixtures show significant promise for improving the performance of concrete mixtures. The lab study also verified the results from prior projects that have indicated that bassanite is typically the major sulfate phase that is present in Iowa cements. This causes the cements to exhibit premature stiffening problems (false set) in laboratory testing. Fly ash helps to reduce the impact of premature stiffening because it behaves like a low-range water reducer in most instances. The premature stiffening problem can also be alleviated by increasing the water–cement ratio of the mixture and providing a remix cycle for the mixture.
Resumo:
We prospectively evaluated the results of our custom cementless femoral stems to ascertain whether this technology produced reasonable clinical function, complication rates, and loosening rates at midterm. Fifty-seven consecutive patients had surgery in 62 hips for primary osteoarthritis at a mean age of 57 years using a three-dimensional computed custom cementless stem. Patients were reviewed at a mean followup of 94.9 months. At review, the mean Harris hip score was 98.8 points (range, 84-100) compared with 61.1 (range, 28-78) points preoperatively. No patient complained of thigh pain. No migration or subsidence was observed. All stems were considered stable according to the radiographic criteria defined by Engh et al. There were no dislocations, no infections, and no reoperations. Our results are comparable with published results from clinical and radiologic points of view. Two problems remain unsolved: the price of a custom stem is twice as expensive as a standard stem; and we need longer term results before definitely recommending this technology as a reasonable alternative to current arthroplasties in younger patients. The data support the continued exploration of this technology with controlled clinical followup. LEVEL OF EVIDENCE: Therapeutic study, Level II-1 (prospective cohort study). See the Guidelines to Authors for a complete description of levels of evidence.
Resumo:
The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein¿s induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors¿s induced stress haloes, now forming a set of equidistant veins, as observed.
Resumo:
Previous Iowa DOT sponsored research has shown that some Class C fly ashes are ementitious (because calcium is combined as calcium aluminates) while other Class C ashes containing similar amounts of elemental calcium are not (1). Fly ashes from modern power plants in Iowa contain significant amounts of calcium in their glassy phases, regardless of their cementitious properties. The present research was based on these findings and on the hyphothesis that: attack of the amorphous phase of high calcium fly ash could be initiated with trace additives, thus making calcium available for formation of useful calcium-silicate cements. Phase I research was devoted to finding potential additives through a screening process; the likely chemicals were tested with fly ashes representative of the cementitious and non-cementitious ashes available in the state. Ammonium phosphate, a fertilizer, was found to produce 3,600 psi cement with cementitious Neal #4 fly ash; this strength is roughly equivalent to that of portland cement, but at about one-third the cost. Neal #2 fly ash, a slightly cementitious Class C, was found to respond best with ammonium nitrate; through the additive, a near-zero strength material was transformed into a 1,200 psi cement. The second research phase was directed to optimimizing trace additive concentrations, defining the behavior of the resulting cements, evaluating more comprehensively the fly ashes available in Iowa, and explaining the cement formation mechanisms of the most promising trace additives. X-ray diffraction data demonstrate that both amorphous and crystalline hydrates of chemically enhanced fly ash differ from those of unaltered fly ash hydrates. Calciumaluminum- silicate hydrates were formed, rather than the expected (and hypothesized) calcium-silicate hydrates. These new reaction products explain the observed strength enhancement. The final phase concentrated on laboratory application of the chemically-enhanced fly ash cements to road base stabilization. Emphasis was placed on use of marginal aggregates, such as limestone crusher fines and unprocessed blow sand. The nature of the chemically modified fly ash cements led to an evaluation of fine grained soil stabilization where a wide range of materials, defined by plasticity index, could be stabilized. Parameters used for evaluation included strength, compaction requirements, set time, and frost resistance.
Resumo:
Supplementary cementitious materials (SCM) have become common parts of modern concrete practice. The blending of two or three cementitious materials to optimize durability, strength, or economics provides owners, engineers, materials suppliers, and contractors with substantial advantages over mixtures containing only portland cement. However, these advances in concrete technology and engineering have not always been adequately captured in specifications for concrete. Users need specific guidance to assist them in defining the performance requirements for a concrete application and the selection of optimal proportions of the cementitious materials needed to produce the required durable concrete. The fact that blended cements are currently available in many regions increases options for mixtures and thus can complicate the selection process. Both Portland and blended cements have already been optimized by the manufacturer to provide specific properties (such as setting time, shrinkage, and strength gain). The addition of SCMs (as binary, ternary, or even more complex mixtures) can alter these properties, and therefore has the potential to impact the overall performance and applications of concrete. This report is the final of a series of publications describing a project aimed at addressing effective use of ternary systems. The work was conducted in several stages and individual reports have been published at the end of each stage.
Resumo:
High-performance concrete (HPC) overlays have been used increasingly as an effective and economical method for bridge decks in Iowa and other states. However, due to its high cementitious material content, HPC often displays high shrinkage cracking potential. This study investigated the shrinkage behavior and cracking potential of the HPC overlay mixes commonly used in Iowa. In the study, 11 HPC overlay mixes were studied. These mixes consisted of three types of cements (Type I, I/II, and IP) and various supplementary cementitious materials (Class C fly ash, slag and metakaolin). Limestone with two different gradations was used as coarse aggregates in 10 mixes and quartzite was used in one mix. Chemical shrinkage of pastes, free drying shrinkage, autogenous shrinkage of mortar and concrete, and restrained ring shrinkage of concrete were monitored over time. Mechanical properties (such as elastic modulus and compressive and splitting tensile strength) of these concrete mixes were measured at different ages. Creep coefficients of these concrete mixes were estimated using the RILEM B3 and NCHRP Report 496 models. Cracking potential of the concrete mixes was assessed based on both ASTM C 1581 and simple stress-to-strength ratio methods. The results indicate that among the 11 mixes studied, three mixes (4, 5, and 6) cracked at the age of 15, 11, and 17 days, respectively. Autogenous shrinkage of the HPC mixes ranges from 150 to 250 microstrain and free dying shrinkage of the concrete ranges from 700 to 1,200 microstrain at 56 days. Different concrete materials (cementitious type and admixtures) and mix proportions (cementitious material content) affect concrete shrinkage in different ways. Not all mixes having a high shrinkage value cracked first. The stresses in the concrete are associated primarily with the concrete shrinkage, elastic modulus, tensile strength, and creep. However, a good relationship is found between cementitious material content and total (autogenous and free drying) shrinkage of concrete.
Resumo:
Effects of polyolefins, neoprene, styrene-butadiene-styrene (SBS) block copolymers, styrene-butadiene rubber (SBR) latex, and hydrated lime on two asphalt cements were evaluated. Physical and chemical tests were performed on a total of 16 binder blends. Asphalt concrete mixes were prepared and tested with these modified binders and two aggregates (crushed limestone and gravel), each at three asphalt content levels. Properties evaluated on the modified binders (original and thin-film oven aged) included: viscosity at 25 deg C, 60 deg C and 135 deg C with capillary tube and cone-plate viscometer, penetration at 5 deg C and 25 deg C, softening point, force ductility, and elastic recovery at 10 deg C, dropping ball test, tensile strength, and toughness and tenacity tests at 25 deg C. From these the penetration index, the viscosity-temperature susceptibility, the penetration-viscosity number, the critical low-temperature, long loading-time stiffness, and the cracking temperature were calculated. In addition, the binders were studied with x-ray diffraction, reflected fluorescence microscopy, and high-performance liquid chromatography techniques. Engineering properties evaluated on the 72 asphalt concrete mixes containing additives included: Marshall stability and flow, Marshall stiffness, voids properties, resilient modulus, indirect tensile strength, permanent deformation (creep), and effects of moisture by vacuum-saturation and Lottman treatments. Pavement sections of varied asphalt concrete thicknesses and containing different additives were compared to control mixes in terms of structural responses and pavement lives for different subgrades. Although all of the additives tested improved at least one aspect of the binder/mixture properties, no additive was found to improve all the relevant binder/mixture properties at the same time. On the basis of overall considerations, the optimum beneficial effects can be expected when the additives are used in conjunction with softer grade asphalts.
Resumo:
A number of claims have been made that polymer modified asphalt cements, multi-grade asphalt cements, and other modifications of the liquid asphalt will prevent rutting and other deterioration of asphalt mixes, thereby, extending the service life of asphalt pavements. This laboratory study evaluates regular AC-20 asphalt cement, PAC-30 polymer modified asphalt cement and AC-10-30 multi-grade asphalt cement. PAC-30 was also evaluated with 15% Gilsonite and 15% Witcurb in a 75% crushed stone - 25% sand mix. These mixtures were evaluated for all Marshall properties along with indirect tensile, resilient modulus, and creep resistance.
Resumo:
The Iowa Department of Transportation (DOT) is continually improving the pavement management program and striving to reduce maintenance needs. Through a 1979 pavement management study, the Iowa DOT became a participant in a five state Federal Highway Administration (FHWA) study of "Transverse Cracking of Asphalt Pavements". There were numerous conclusions and recommendations but no agreement as to the major factors contributing to transverse cracking or methods of preventing or reducing the occurrence of transverse cracking. The project did focus attention on the problem and generated ideas for research. This project is one of two state funded research projects that were a direct result of the FHWA project. Iowa DOT personnel had been monitoring temperature susceptibility of asphalt cements by the Norman McLeod Modified Penetration Index. Even though there are many variables from one asphalt mix to another, the trend seemed to indicate that the frequency of transverse cracking was highly dependent on the temperature susceptibility. Research project HR-217 "Reducing the Adverse Effects of Transverse Cracking" was initiated to verify the concept. A final report has been published after a four-year evaluation. The crack frequency with the high temperature susceptible asphalt cement was substantially greater than for the low temperature susceptible asphalt cement. An increased asphalt cement content in the asphalt treated base also reduced the crack frequency. This research on prevention of transverse cracking with fabric supports the following conclusions: 1. Engineering fabric does not prevent transverse cracking of asphalt cement concrete. 2. Engineering fabric may retard the occurrence of transverse cracking. 3. Engineering fabric does not contribute significantly to the structural capability of an asphalt concrete pavement.
Resumo:
This research was initiated to identify methods of reducing the occurrence of transverse cracking. Eight (four repetitive) research sections were established to study three variations in the asphalt concrete pavement. The first variation was the comparison of low- and high-temperature-susceptible asphalt cement (AC) from two different sources. The second variable was to saw and seal transverse joints at spacings varying from 40 to 100 ft. The third variable was to increase the AC content in the asphalt treated base by 1 percent. The research sections were constructed with relatively few problems. Crack and joint surveys have been conducted on all research sections at intervals of less than 1 year since construction. No cracking was identified after the first winter season. The sawed joints also remained sealed through the first winter. At an age of approximately 1 1/2 years there was substantial cracking of the high-temperature-susceptible AC sections and substantial failure of the sealant material in the sawed joints. After almost 4 years, the asphalt pavement constructed with the high-temperature-susceptible AC produced a crack interval of 35 ft, the low-temperature-susceptible AC yielded an interval of 170 ft, and the low-temperature-susceptible AC with an increased AC content yielded an interval of 528 ft. The Pen-Vis number is an effective measure of temperature susceptibility of asphalt cements. The frequency of transverse cracking is affected by the temperature susceptibility of the AC. An increased AC content also reduces the frequency of transverse cracking.
Resumo:
The freeze-thaw resistance of concretes was studied. Nine concrete mixes, made with five cements and cement-Class C fly ash combinations, were exposed to freeze-thaw cycling following 110 to 222 days of moist curing. Prior to the freeze-thaw cycling, the specimens were examined by a low-vacuum scanning electron microscope (SEM) for their microstructure. The influence of a wet/dry treatment was also studied. Infilling of ettringite in entrained air voids was observed in the concretes tested. The extent of the infilling depends on the period of moist curing as well as the wet/dry treatment. The concretes with 15% Class C fly ash replacement show more infilling in their air voids. It was found that the influence of the infilling on the freeze-thaw durability relates to the air spacing factor. The greater the spacing factor, the more expansion under the freeze-thaw cycling. The infilling seems to decrease effective air content and to increase effective spacing factor. The infilling also implies that the filled air voids are water-accessible. These might lead to concrete more vulnerable to the freeze-thaw attack. By combining the above results with field observations, one may conclude that the freeze-thaw damage is a factor related to premature deterioration of portland cement concrete pavements in Iowa.
Resumo:
Project 540-S of the Iowa Engineering Experiment Station (Project HR-107, Iowa Highway Research Board) was started in June, 1964. During the year ten 2-gallon samples of asphalt cement and ten 100-lb samples of asphaltic concrete were studied by the personnel of the Bituminous Research Laboratory, Iowa State University. The samples were from tanks and mixers of asphalt plants at various Iowa State Highway Commission paving jobs. The laboratory's research was in two phases: 1. To ascertain if properties of asphalt cement changed during mixing operations. 2. To determine whether one or more of the several tests of asphalt cements were enough to indicate behavior of the heated asphalt cements. If the reliability of one or more tests could be proved, the behavior of asphalts would be more simply and rapidly predicted.