904 resultados para Electrochemistry.
Resumo:
A stable film was prepared by casting dipalmitoylphosphatidylcholine (DPPC) and rutin onto the surface of a glassy carbon (GC) electrode. The electrochemistry behavior of rutin in the DPPC film was investigated. The modified electrode coated with rutin shows a quasi-reversible reduction-oxidation peak on the cyclic voltammogram in phosphate buffer (pH 7.4). This model of biological membrane was not only used to provide biological environment but also to investigate the oxidation of ascorbic acid by rutin. The DPPC-rutin modified electrode behaves as electrocatalytic oxidation to ascorbic acid. The oxidation peak current of ascorbic acid increases drastically and the peak potential of 4 x 10(-4) mol L-1 ascorbic acid shifts negatively about 100 mV compared with that obtained at a bare glassy carbon electrode. The catalytic current increased linearly with the ascorbic acid concentration in the range of 2 x 10(-4) mol L-1 and 1.4 x 10(-3) mol L-1 at a scan rate of 50 mV s(-1).
Resumo:
Surface photovoltage spectra (SPS) measurements of TiO2 show that a large surface state density is present on the TiO2 nanoparticles and these surface states can be efficiently decreased by sensitization using US nanoparticles as well as by suitable heat treatment. The photoelectrochemical behavior of the bare TiO2 thin film indicates that the mechanism of photoelectron transport is controlled by the trapping/detrapping properties of surface states within the thin films, The slow photocurrent response upon the illumination can be explained by the trap saturation effect. For a TiO2 nanoparticulate thin film sensitized using US nanoparticles, the slow photocurrent response disappears and the steady-state photocurrent increases drastically, which suggests that photosensitization can decrease the effect of surface states on photocurrent response.
Resumo:
In this paper, we demonstrate for the first time that upon electrochemical oxidation/reduction, the transition in the conductivity of polyaniline (PAn) film on gold electrode surface leads to a large change of surface plasmon resonance (SPR) response due to a change in the imaginary part of dielectric constant of PAn film. Based on the amplifying response of SPR to the redox transformation of PAn film as a direct result of the enzymatic reaction between horseradish peroxidase (HRP) and PAn in the presence of H2O2, a novel PAn-mediated HRP sensor has been fabricated. The electrochemical SPR biosensor, unlike a usual binding assay with SPR, can afford a larger SPR response, and can also be reused by reducing the PAn film electrochemically to its reduced state. This method opens up a new route to the fabrication of SPR biosensor. (C) 2001 Elsevier Science BN. All rights reserved.
Resumo:
Manganous hexacyanoferrate (MnHCF) supported on graphite powder was dispersed into methyltrimethoxysilane-derived gels to yield a conductive composite, which was used as electrode material to construct a renewable three-dimensional MnHCF-modifed electrode. MnHCF acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. Cyclic voltammetry was exploited to investigate the dependence of electrochemical behavior on supporting electrolytes containing various cations. The chemically modified electrode can electrocatalytically oxidize L-cysteine, and exhibits a distinct advantage of polishing in the event of surface fouling, as well as simple preparation, good chemical and mechanical stability, and good repeatability of surface renewal.
Resumo:
Monolayer assembly of 2-mercapto-3-n-octylthiophene (MOT) having a relatively large headgroup onto gold surface from its dilute ethanolic solutions has been investigated by electrochemistry. An electrochemical capacitance measurement on the permeability of the monolayer to aqueous ions, as compared with its alkanethiol counterpart [CH3(CH2)(9)SH (DT)] with a similar molecular length, shows that the self-assembled monolayers (SAMs) of MOT can be penetrated by aqueous ions to some extent. Furthermore, organic molecular probes, such as dopamine, can sufficiently diffuse into the monolayer because a diffusion-limited current peak is observed when the dopamine oxidation reaction takes place, showing that the monolayer is loosely packed or dominated by defects. But the results of electron transfer to aqueous redox probes (including voltammetry in Fe(CN)(6)(3-/4-) solutions and electrochemical ac impedance spectrum) confirm that the monolayer can passivate the gold electrode surface effectively for its very low ratio of pinhole defects. Moreover, a heterogeneous patching process involving addition of the surfactants into the SAMs provides a mixed or hybrid membrane that has superior passivating properties. These studies show that the MOT monolayer on the electrode can provide an excellent barrier for hydrated ionic probe penetration but cannot resist the organic species penetration effectively. The unusual properties of the SAMs are attributed to the entity of the relatively large thiophene moiety between the carbon chain and the thiol group.
Resumo:
The electrochemiluminescence (ECL) of tris(2,2'-bipyridine)ruthenium(ii) [Ru(bpy)(3)(2+)] immobilized in poly(p-styrenesulfonate) (PSS)-silica-Triton X-100 composite films was investigated. The cooperative action of PSS, sol-gel and Triton X-100 attached Ru(bpy)(3)(2+) to the electrode strongly, and the presence of Triton X-100 prevented drying fractures of the sol-gel films during gelation and even on repeated wet-dry cycles. The modified electrode was used for the ECL detection of oxalate, tripropylamine (TPA) and NADH in a flow injection analysis (FIA) system with a newly designed flow cell. The detection scheme exhibited good stability, short response time and high sensitivity. Detection limits were 0.1, 0.1 and 0.5 mu mol L-1 for oxalate, TPA and NADH, respectively, and the linear concentration range extended from 0.001 to 1 mmol L-1 for the three analytes. Applications of the flow cell in ECL and electrochemical detection, as well as the immobilization of reagents based on the cooperative action, are suggested.
Resumo:
The reactions of half-sandwich diselenolate Mo and W complexes (CpM)-M-#(NO)(SePh)(2) (M = Mo; Cp-# = Cp' (1a), MeCp (1b); M = W; Cp-# = Cp' (1c)) with (Norb)Mo(CO)(4), Ni(COD)(2) and Fe(CO)(5) have been investigated. Treatment of (1a), (1b) and (1c) with (Norb)Mo(CO)(4) in PhMe gave the bimetallic complexes: Cp'Mo(NO)(mu -SePh)(2)Mo(CO)(4) (2a), MeCpMo(NO)(mu -SePh)(2)Mo(CO)(4) (2b) and Cp'W(NO)(mu -SePh)(2)Mo(CO)(4) (2c) in moderate yields. Irradiation of (1a) and (1c) in the presence of Fe(CO)(5) gave heterobimetallic complexes Cp'Mo(CO)(mu -SePh)(2)Fe(CO)(3) (3a) and Cp'W(NO)(mu -SePh)(2)Fe(CO)(3) (3c). Ni(COD)(2) reacts with two equivalents of (1a), (1b) and (1c) to give [Cp'Mo(NO)(mu -SePh)(2)](2)Ni (4a), [MeCpMo(NO)(mu -SePh)(2)](2)Ni (4b) and [Cp'W(NO)(mu -SePh)(2)](2)Ni (4c) in good yields. The new heterobimetallic complexes were characterized by i.r., H-1-n.m.r., C-13-n.m.r. and EI-MS spectroscopy.
Resumo:
A novel inorganic-organic hybrid material incorporating graphite powder and Keggin-type alpha -germanomolybdic acid (GeMo12) in methyltrimethoxysilane-based gels has been produced by the sol-gel technique and used to fabricate a chemically bulk-modified electrode. GeMo12 acts as a catalyst, graphite powder ensures conductivity by percolation, the silicate provides a rigid porous backbone, and the methyl groups endow hydrophobicity and thus limit the wetting section of the modified electrode. The GeMo12-modified graphite organosilicate composite electrode was characterized by cyclic and square-wave voltammetry. The modified electrode shows a high electrocatalytic activity toward the reduction of bromate, nitrite and hydrogen peroxide in acidic aqueous solution. In addition, the chemically-modified electrode has some distinct advantages over the traditional polyoxometalate-modified electrodes, such as long-term stability and especially repeatability of surface-renewal by simple mechanical polishing.
Resumo:
Cobalt(II) hexacyanoferrate (CoHCF) was deposited on graphite powder by an in situ chemical deposition procedure and then dispersed into methyltrimethoxysilane-derived gels to prepare a surface-renewable CoHCF-modified electrode. The electrochemical behavior of the modified electrode in different supporting electrolyte solutions was characterized by cyclic voltammetry. In addition, square-wave voltammetry was employed to investigate the pNa-dependent electrochemical behavior of the electrode. The CoHCF-modified electrode showed a high electrocatalytic activity toward thiosulfate oxidation and could thus be used as an amperometric thiosulfate sensor.
Resumo:
Graphite powder-supported nickel(II) hexacyanoferrate (NiHCF) was prepared by the in situ chemical deposition method and then dispersed into methyltrimethoxysilane-derived gels to form a conductive composite. The composite was used as electrode material to construct a surface-renewable three-dimensional NiHCF-modified carbon ceramic electrode. Electrochemical behavior of the chemically modified electrode was well characterized using cyclic and square-wave voltammetry. The electrode presented a good electrocatalytic activity toward the oxidization of thiosulfate and thus was used as an amperometric sensor for thiosulfate in the photographic waste effluent. In addition, the electrode exhibited a distinct advantage of surface-renewal by simple mechanical polishing, as well as simple preparation, good chemical and mechanical stability. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Stable lipid film was made by casting lipid in chloroform onto a glassy carbon electrode. This model of a biological membrane was used to investigate the oxidation of dihydronicotinamide adenine dinucleotide (NADH) by dopamine. After this electrode had been immersed in dopamine solution for 10 h, it was found that some dopamine had been incorporated in the film. The cyclic voltammogram was obtained for the oxidation of 2.0 X 10(-3) mol 1(-1) NADH with dopamine incorporated in the films. All electrochemical experiments were performed in 0.005 mol 1(-1) phosphate buffer (pH 7.0) containing 0.1 mol 1(-1) NaCl without oxygen. The oxidation current increased gradually with successive sweeps and reached steady state. It was a different phenomenon from previous results. The anodic overpotential was reduced by about 130 mV compared with that obtained at a bare glassy carbon electrode. The diffusion coefficient for 2.0 X 10(-3) mol 1(-1) NADH was 6.7 X 10(-6) cm(2) s(-1). (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
A novel method for the highly sensitive determination of perchlorate was proposed. It was based on solvent extraction in the presence of Ru(bpy)(3)(2+) followed by Ru(bpy)(3)(2+) electrochemiluminescent determination. A linear calibration was obtained over the range of 0.1 to 10 mu mol l(-1) with a correlation coefficient of 0.998. The detection limit (S/N = 3) was 5.0 x 10(-8) mol l(-1). The relative standard deviation for 10 replicates of 1 mu mol l(-1) perchlorate was 1.6%. Interference studies suggest that this method is selective for the determination of perchlorate. Application of this method to the highly sensitive determination of other anions is suggested. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Non-stoichiometric mixed-valent molybdenum(VI, V) oxide film was grown on carbon substrates by the electrodeposition method. Responses of the prepared molybdenum oxide thin films to potential and to different solution acidities were studied by cyclic voltammetry, and the corresponding morphological changes of the film were monitored by atomic force microscopy (AFM). AFM images of the molybdenum oxide film show that the characteristic domed structure on the film surface increased during the transition from the oxidized state to the reduced state without signification change in the KMS surface roughness value. Furthermore, AFM studies show that the solution acidity has great effect on the morphology of the films, and the films undergo a homogenizing process with increasing pH of the solutions. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
Two novel Ru(phen)(3)(2+)-based probes for electrochemiluminescent immunoassay, Ru(phen)(2)(phen-NHCOCH2CH2COOH)(PF6)(2) and Ru(phen)(2) (phen-NHCOCH2CH2CH2COOH) (PF6)(2), were designed, synthesized and characterized. Electrochemistry, Fluorescence, and electrochemiluminescence of the two complexed are also reported.
Resumo:
Four novel screw-like Ru(II) complexes, tris(5-lauramide-1,10-phenanthroline)Ru(II) bishexafluorophosphate, tris(5-myristamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate, tris(5-palmitamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate and tris (5-stearamide-1,10-phenanthroline)Ru(II) bishexafluorophosphate have been efficiently synthesized. They are confirmed by the techniques of IR, H-1 NMR, H-1-H-1 COSY and ES-MS. Also, their electrochemistry, fluorescence and electrochemiluminescence are reported.