940 resultados para Electric power systems -- Quality control
Resumo:
Recommendation for Oxygen Measurements from Argo Floats: Implementation of In-Air-Measurement Routine to Assure Highest Long-term Accuracy As Argo has entered its second decade and chemical/biological sensor technology is improving constantly, the marine biogeochemistry community is starting to embrace the successful Argo float program. An augmentation of the global float observatory, however, has to follow rather stringent constraints regarding sensor characteristics as well as data processing and quality control routines. Owing to the fairly advanced state of oxygen sensor technology and the high scientific value of oceanic oxygen measurements (Gruber et al., 2010), an expansion of the Argo core mission to routine oxygen measurements is perhaps the most mature and promising candidate (Freeland et al., 2010). In this context, SCOR Working Group 142 “Quality Control Procedures for Oxygen and Other Biogeochemical Sensors on Floats and Gliders” (www.scor-int.org/SCOR_WGs_WG142.htm) set out in 2014 to assess the current status of biogeochemical sensor technology with particular emphasis on float-readiness, develop pre- and post-deployment quality control metrics and procedures for oxygen sensors, and to disseminate procedures widely to ensure rapid adoption in the community.
Resumo:
This document is the Argo quality control manual for Dissolved oxygen concentration. It describes two levels of quality control: • The first level is the real-time system that performs a set of agreed automatic checks. • Adjustment in real-time can also be performed and the real-time system can evaluate quality flags for adjusted fields • The second level is the delayed-mode quality control system.
Resumo:
In April 2017, CMEMS plans to launch the WAVES NRT products. This document is focused in the automatic RTQC of the collected wave data. The validation procedure includes the delayed mode quality control of the data and will be specified in another guideline. To perform any kind of quality control to wave data, first it’s necessary to know the nature of the measurements and the analysis performed to those measurements to obtain the wave parameters. For that reason next chapter is dedicated to show the usual wave analysis and the different parameters and estimators obtained.
Resumo:
Dissertação de mestrado, Qualidade em Análises, Faculdade de Ciências e Tecnologia, Universidade do Algarve, 2014
Resumo:
This thesis attempts to find the least-cost strategy to reduce CO2 emission by replacing coal by other energy sources for electricity generation in the context of the proposed EPA’s regulation on CO2 emissions from existing coal-fired power plants. An ARIMA model is built to forecast coal consumption for electricity generation and its CO2 emissions in Michigan from 2016 to 2020. CO2 emission reduction costs are calculated under three emission reduction scenarios- reduction to 17%, 30% and 50% below the 2005 emission level. The impacts of Production Tax Credit (PTC) and the intermittency of renewable energy are also discussed. The results indicate that in most cases natural gas will be the best alternative to coal for electricity generation to realize CO2 reduction goals; if the PTC for wind power will continue after 2015, a natural gas and wind combination approach could be the best strategy based on the least-cost criterion.
Resumo:
The emergence of microgeneration has recently lead to the concept of microgrid, a network of LV consumers and producers able to export electric energy in some circumstances and also to work in an isolated way in emergency situations. Research on the organization of microgrids, control devices, functionalities and other technical aspects is presently being carried out, in order to establish a consistent technical framework to support the concept. The successful development of the microgrid concept implies the definition of a suitable regulation for its integration on distribution systems. In order to define such a regulation, the identification of costs and benefits that microgrids may bring is a crucial task. Actually, this is the basis for a discussion about the way global costs could be divided among the different agents that benefit from the development of microgrids. Among other aspects, the effect of microgrids on the reliability of the distribution network has been pointed out as an important advantage, due to the ability of isolated operation in emergency situations. This paper identifies the situations where the existence of a microgrid may reduce the interruption rate and duration and thus improve the reliability indices of the distribution network. The relevant expressions necessary to quantify the reliability are presented. An illustrative example is included, where the global influence of the microgrid in the reliability is commented.
Resumo:
This paper presents a new approach, predictor-corrector modified barrier approach (PCMBA), to minimize the active losses in power system planning studies. In the PCMBA, the inequality constraints are transformed into equalities by introducing positive auxiliary variables. which are perturbed by the barrier parameter, and treated by the modified barrier method. The first-order necessary conditions of the Lagrangian function are solved by predictor-corrector Newton`s method. The perturbation of the auxiliary variables results in an expansion of the feasible set of the original problem, reaching the limits of the inequality constraints. The feasibility of the proposed approach is demonstrated using various IEEE test systems and a realistic power system of 2256-bus corresponding to the Brazilian South-Southeastern interconnected system. The results show that the utilization of the predictor-corrector method with the pure modified barrier approach accelerates the convergence of the problem in terms of the number of iterations and computational time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper is on the problem of short-term hydro scheduling (STHS), particularly concerning a head-dependent hydro chain We propose a novel mixed-integer nonlinear programming (MINLP) approach, considering hydroelectric power generation as a nonlinear function of water discharge and of the head. As a new contribution to eat her studies, we model the on-off behavior of the hydro plants using integer variables, in order to avoid water discharges at forbidden areas Thus, an enhanced STHS is provided due to the more realistic modeling presented in this paper Our approach has been applied successfully to solve a test case based on one of the Portuguese cascaded hydro systems with a negligible computational time requirement.
Resumo:
In many countries the use of renewable energy is increasing due to the introduction of new energy and environmental policies. Thus, the focus on the efficient integration of renewable energy into electric power systems is becoming extremely important. Several European countries have already achieved high penetration of wind based electricity generation and are gradually evolving towards intensive use of this generation technology. The introduction of wind based generation in power systems poses new challenges for the power system operators. This is mainly due to the variability and uncertainty in weather conditions and, consequently, in the wind based generation. In order to deal with this uncertainty and to improve the power system efficiency, adequate wind forecasting tools must be used. This paper proposes a data-mining-based methodology for very short-term wind forecasting, which is suitable to deal with large real databases. The paper includes a case study based on a real database regarding the last three years of wind speed, and results for wind speed forecasting at 5 minutes intervals.
Resumo:
Distributed generation unlike centralized electrical generation aims to generate electrical energy on small scale as near as possible to load centers, interchanging electric power with the network. This work presents a probabilistic methodology conceived to assist the electric system planning engineers in the selection of the distributed generation location, taking into account the hourly load changes or the daily load cycle. The hourly load centers, for each of the different hourly load scenarios, are calculated deterministically. These location points, properly weighted according to their load magnitude, are used to calculate the best fit probability distribution. This distribution is used to determine the maximum likelihood perimeter of the area where each source distributed generation point should preferably be located by the planning engineers. This takes into account, for example, the availability and the cost of the land lots, which are factors of special relevance in urban areas, as well as several obstacles important for the final selection of the candidates of the distributed generation points. The proposed methodology has been applied to a real case, assuming three different bivariate probability distributions: the Gaussian distribution, a bivariate version of Freund’s exponential distribution and the Weibull probability distribution. The methodology algorithm has been programmed in MATLAB. Results are presented and discussed for the application of the methodology to a realistic case and demonstrate the ability of the proposed methodology for efficiently handling the determination of the best location of the distributed generation and their corresponding distribution networks.
Resumo:
This paper addresses the optimal involvement in derivatives electricity markets of a power producer to hedge against the pool price volatility. To achieve this aim, a swarm intelligence meta-heuristic optimization technique for long-term risk management tool is proposed. This tool investigates the long-term opportunities for risk hedging available for electric power producers through the use of contracts with physical (spot and forward contracts) and financial (options contracts) settlement. The producer risk preference is formulated as a utility function (U) expressing the trade-off between the expectation and the variance of the return. Variance of return and the expectation are based on a forecasted scenario interval determined by a long-term price range forecasting model. This model also makes use of particle swarm optimization (PSO) to find the best parameters allow to achieve better forecasting results. On the other hand, the price estimation depends on load forecasting. This work also presents a regressive long-term load forecast model that make use of PSO to find the best parameters as well as in price estimation. The PSO technique performance has been evaluated by comparison with a Genetic Algorithm (GA) based approach. A case study is presented and the results are discussed taking into account the real price and load historical data from mainland Spanish electricity market demonstrating the effectiveness of the methodology handling this type of problems. Finally, conclusions are dully drawn.
Resumo:
Dissertação para a obtenção do grau de Mestre em Engenharia Electrotécnica Ramo de Energia