983 resultados para Electric engineering.
Resumo:
In this paper, we investigate theoretically and numerically the efficiency of energy coupling from a plasmon generated by a grating coupler at one of the interfaces of a metal wedge into the plasmonic eigenmode (i.e., symmetric or quasisymmetric plasmon) experiencing nanofocusing in the wedge. Thus the energy efficiency of energy coupling into metallic nanofocusing structure is analyzed. Two different nanofocusing structures with the metal wedge surrounded by a uniform dielectric (symmetric structure) and with the metal wedge enclosed between a substrate and a cladding with different dielectricpermittivities (asymmetric structure) are considered by means of the geometrical optics (adiabatic) approximation. It is demonstrated that the efficiency of the energy coupling from the plasmon generated by the grating into the symmetric or quasisymmetric plasmon experiencing nanofocusing may vary between ∼50% to ∼100%. In particular, even a very small difference (of ∼1%–2%) between the permittivities of the substrate and the cladding may result in a significant increase in the efficiency of the energy coupling (from ∼50% up to ∼100%) into the plasmon experiencing nanofocusing. Distinct beat patterns produced by the interference of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) plasmons are predicted and analyzed with significant oscillations of the magnetic and electric field amplitudes at both the metal wedge interfaces. Physical interpretations of the predicted effects are based upon the behavior, dispersion, and dissipation of the symmetric (quasisymmetric) and antisymmetric (quasiantisymmetric) filmplasmons in the nanofocusing metal wedge. The obtained results will be important for optimizing metallic nanofocusing structures and minimizing coupling and dissipative losses.
Resumo:
Purpose While a number of universities in Australia have embraced concepts such as project/problem‐based learning and design of innovative learning environments for engineering education, there has been a lack of national guidance on including sustainability as a “critical literacy” into all engineering streams. This paper was presented at the 2004 International Conference on Engineering Education in Sustainable Development (EESD) in Barcelona, Spain, outlining a current initiative that is seeking to address the “critical literacy” dilemma. Design/methodology/approach The paper presents the positive steps taken by Australia's peak engineering body, the Institution of Engineers Australia (EA), in considering accreditation requirements for university engineering courses and its responsibility to ensure the inclusion of sustainability education material. It then describes a current initiative called the “Engineering Sustainable Solutions Program – Critical Literacies for Engineers Portfolio” (ESSP‐CL), which is being developed by The Natural Edge Project (TNEP) in partnership with EA and Unesco. Findings Content for the module was gathered from around the world, drawing on research from the publication The Natural Advantage of Nations: Business Opportunities, Innovation, and Governance in the Twenty‐first Century. Parts of the first draft of the ESSP‐CL have been trialled at Griffith University, Queensland, Australia with first year environmental engineering students, in May 2004. Further trials are now proceeding with a number of other universities and organisations nationally and internationally. Practical implications It is intended that ESSP‐CL will be a valuable resource to universities, professional development activities or other education facilities nationally and internationally. Originality/value This paper fulfils an identified information/resources need.