520 resultados para Ejection.


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular disease (CVD) continues to be one of the top causes of mortality in the world. World Heart Organization (WHO) reported that in 2004, CVD contributed to almost 30% of death from estimated worldwide death figures of 58 million[1]. Heart failure treatment varies from lifestyle adjustment to heart transplantation; its aims are to reduce HF symptoms, prolong patient survival and minimize risk [2]. One alternative available in the market for HF treatment is Left Ventricular Assist Device (LVAD). Chronic Intermittent Mechanical Support (CIMS) device is a novel (LVAD) heart failure treatment using counterpulsation similar to Intra Aortic Balloon Pumps (IABP). However, the implantation site of the CIMS balloon is in the ascending aorta just distal to aortic valve contrasted with IABP in the descending aorta. Counterpulsation coupled with implantation close to the aortic valve enables comparable flow augmentation with reduced balloon volume. Two prototypes of the CIMS balloon were constructed using rapid prototyping: the straight-body model is a cylindrical tube with a silicone membrane lining with zero expansive compliance. The compliant-body model had a bulging structure that allowed the membrane to expand under native systolic pressure increasing the device’s static compliance to 1.5 mL/mmHg. This study examined the effect of device compliance and vascular compliance on counterpulsating flow augmentation. Both prototypes were tested on a two-element Windkessel model human mock circulatory loop (MCL). The devices were placed just distal to aortic valve and left coronary artery. The MCL mimicked HF with cardiac output of 3 L/min, left ventricular pressure of 85/15 mmHg, aortic pressure of 70/50 mmHg and left coronary artery flow rate of 66 mL/min. The mean arterial pressure (MAP) was calculated to be 57 mmHg. Arterial compliance was set to be1.25 mL/mmHg and 2.5 mL/mmHg. Inflation of the balloon was triggered at the dicrotic notch while deflation was at minimum aortic pressure prior to systole. Important haemodynamics parameters such as left ventricular pressure (LVP), aortic pressure (AoP), cardiac output (CO), left coronary artery flowrate (QcorMean), and dP (Peak aortic diastolic augmentation pressure – AoPmax ) were simultaneously recorded for both non-assisted mode and assisted mode. ANOVA was used to analyse the effect of both factors (balloon and arterial compliance) to flow augmentation. The results showed that for cardiac output and left coronary artery flowrate, there were significant difference between balloon and arterial compliance at p < 0.001. Cardiac output recorded maximum output at 18% for compliant body and stiff arterial compliance. Left coronary artery flowrate also recorded around 20% increase due to compliant body and stiffer arterial compliance. Resistance to blood ejection recorded highest difference for combination of straight body and stiffer arterial compliance. From these results it is clear that both balloon and arterial compliance are statistically significant factors for flow augmentation on peripheral artery and reduction of resistance. Although the result for resistance reduction was different from flow augmentation, these results serves as an important aspect which will influence the future design of the CIMS balloon and its control strategy. References: 1. Mathers C, Boerma T, Fat DM. The Global Burden of disease:2004 update. Geneva: World Heatlh Organization; 2008. 2. Jessup M, Brozena S. Heart Failure. N Engl J Med 2003;348:2007-18.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background - Intrauterine growth restriction is associated with an increased future risk for developing cardiovascular diseases. Hypoxia in utero is a common clinical cause of fetal growth restriction. We have previously shown that chronic hypoxia alters cardiovascular development in chick embryos. The aim of this study was to further characterize cardiac disease in hypoxic chick embryos. Methods - Chick embryos were exposed to hypoxia and cardiac structure was examined by histological methods one day prior to hatching (E20) and at adulthood. Cardiac function was assessed in vivo by echocardiography and ex vivo by contractility measurements in isolated heart muscle bundles and isolated cardiomyocytes. Chick embryos were exposed to vascular endothelial growth factor (VEGF) and its scavenger soluble VEGF receptor-1 (sFlt-1) to investigate the potential role of this hypoxia-regulated cytokine. Principal Findings - Growth restricted hypoxic chick embryos showed cardiomyopathy as evidenced by left ventricular (LV) dilatation, reduced ventricular wall mass and increased apoptosis. Hypoxic hearts displayed pump dysfunction with decreased LV ejection fractions, accompanied by signs of diastolic dysfunction. Cardiomyopathy caused by hypoxia persisted into adulthood. Hypoxic embryonic hearts showed increases in VEGF expression. Systemic administration of rhVEGF165 to normoxic chick embryos resulted in LV dilatation and a dose-dependent loss of LV wall mass. Lowering VEGF levels in hypoxic embryonic chick hearts by systemic administration of sFlt-1 yielded an almost complete normalization of the phenotype. Conclusions/Significance - Our data show that hypoxia causes a decreased cardiac performance and cardiomyopathy in chick embryos, involving a significant VEGF-mediated component. This cardiomyopathy persists into adulthood.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Cardiovascular diseases (CVD) contributed to almost 30% of worldwide mortality; with heart failure being one class of CVD. One popular and widely available treatment for heart failure is the intra-aortic balloon pump (IABP). This heart assist device is used in counterpulsation to improve myocardial function by increasing coronary perfusion, and decreasing aortic end-diastolic pressure (i.e. the resistance to blood ejection from the heart). However, this device can only be used acutely, and patients are bedridden. The subject of this research is a novel heart assist treatment called the Chronic Intermittent Mechanical Support (CIMS) which was conceived to offer advantages of the IABP device chronically, whilst overcoming its disadvantages. The CIMS device comprises an implantable balloon pump, a percutaneous drive line, and a wearable driver console. The research here aims to determine the haemodynamic effect of balloon pump activation under in vitro conditions. A human mock circulatory loop (MCL) with systemic and coronary perfusion was constructed, capable of simulating various degrees of heart failure. Two prototypes of the CIMS balloon pump were made with varying stiffness. Several experimental factors (balloon inflation/deflation timing, Helium gas volume, arterial compliance, balloon pump stiffness and heart valve type) form the factorial design experiments. A simple modification to the MCL allowed flow visualisation experiments using video recording. Suitable statistical tests were used to analyse the data obtained from all experiments. Balloon inflation and deflation in the ascending aorta of the MCL yielded favourable results. The sudden balloon deflation caused the heart valve to open earlier, thus causing longer valve opening duration in a cardiac cycle. It was also found that pressure augmentation in diastole was significantly correlated with increased cardiac output and coronary flowrate. With an optimum combination (low arterial compliance and low balloon pump stiffness), systemic and coronary perfusions were increased by 18% and 21% respectively, while the aortic end-diastolic pressure (forward flow resistance) decreased by 17%. Consequently, the ratio of oxygen supply and demand to myocardium (endocardial viability ratio, EVR) increased between 33% and 75%. The increase was mostly attributed to diastolic augmentation rather than systolic unloading.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background— Fetal growth restriction (FGR) affects 5% to 10% of newborns and is associated with increased cardiovascular mortality in adulthood. The most commonly accepted hypothesis is that fetal metabolic programming leads secondarily to diseases associated with cardiovascular disease, such as obesity, diabetes mellitus, and hypertension. Our main objective was to evaluate the alternative hypothesis that FGR induces primary cardiac changes that persist into childhood. Methods and Results— Within a cohort of fetuses with growth restriction identified in fetal life and followed up into childhood, we randomly selected 80 subjects with FGR and compared them with 120 normally grown fetuses, matched for gender, birth date, and gestational age at birth. Cardiovascular assessment was performed in childhood (mean age of 5 years). Compared with control subjects, children with FGR had a different cardiac shape, with increased transversal diameters and more globular cardiac ventricles. Although left ejection fraction was similar among the study groups, stroke volume was reduced significantly, which was compensated for by an increased heart rate to maintain output in severe FGR. This was associated with subclinical longitudinal systolic dysfunction (decreased myocardial peak velocities) and diastolic changes (increased E/E' ratio and E deceleration time). Children with FGR also had higher blood pressure and increased intima-media thickness. For all parameters evaluated, there was a linear increase with the severity of growth restriction. Conclusions— These findings suggest that FGR induces primary cardiac and vascular changes that could explain the increased predisposition to cardiovascular disease in adult life. If these results are confirmed, the impact of strategies with beneficial effects on cardiac remodeling should be explored in children with FGR.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A new mesoscale simulation model for solids dissolution based on an computationally efficient and versatile digital modelling approach (DigiDiss) is considered and validated against analytical solutions and published experimental data for simple geometries. As the digital model is specifically designed to handle irregular shapes and complex multi-component structures, use of the model is explored for single crystals (sugars) and clusters. Single crystals and the cluster were first scanned using X-ray microtomography to obtain a digital version of their structures. The digitised particles and clusters were used as a structural input to digital simulation. The same particles were then dissolved in water and the dissolution process was recorded by a video camera and analysed yielding: the overall dissolution times and images of particle size and shape during the dissolution. The results demonstrate the coherence of simulation method to reproduce experimental behaviour, based on known chemical and diffusion properties of constituent phase. The paper discusses how further sophistications to the modelling approach will need to include other important effects such as complex disintegration effects (particle ejection, uncertainties in chemical properties). The nature of the digital modelling approach is well suited to for future implementation with high speed computation using hybrid conventional (CPU) and graphical processor (GPU) systems.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Monocytes are implicated in the initiation and progression of theatherosclerotic plaque contributing to plaque instability and rupture. Little is knownof the role played by the 3 phenotypically and functionally different monocytesubpopulations in determining ventricular remodeling following ST elevation my-ocardial infarction (STEMI). Mon1 are "classical" inflammatory monocytes, whilstMon3 are considered reparative with fibroblast deposition ability. The function ofthe newly described Mon2 is yet to be elucidated. Method: STEMI patients (n=196, mean age 62±13 years; 72% male) treatedwith percutaneous revascularization were recruited within the first 24 hours. Pe-ripheral blood monocyte subpopulations were enumerated and characterizedusing flow cytometry after staining for CD14, CD16 and CCR2. Phenotypi-cally, monocyte subpopulations are defined as: CD14+CD16-CCR2+ (Mon1),CD14+CD16+CCR+ (Mon2) and CD14lowCD16+CCR2- (Mon3) cells. Transtho-racic 2D echocardiography was performed within 7 days and 6 months post infarctto assess ventricular volumes, mass, systolic, and diastolic functions. Results: Using linear regression analysis higher counts for Mon1, and lowercounts for Mon2 and Mon3 were significantly associated with the baseline leftventricular ejection fraction (LVEF) within seven days post infarction. At 6 monthspost STEMI lower counts of Mon2 remained positively associated with decreasedLVEF (p value= 0.002).Monocyte subsets correlation with LVEFMonocytes mean florescence Baseline left ventricular Left ventricular ejectionintensity (cells/μl) ejection fraction (%) fraction (%) at 6 months post infarctβ-value P-valueβ-value P-valueTotal Mon0.31 P<0.001 0.360.009Mon 10.019 0.020.070.62Mon 2−0.28 0.001 −0.420.002Mon 3−0.27 0.001 −0.180.21 Conclusion: Peripheral monocytes of all three subsets correlate with LVEF af-ter a myocardial infarction. High counts of the inflammatory Mon1 are associatedwith reduction in the baseline LVEF. Post remodelling, the convalescent EF wasindependently predicted by monocyte subpopulation 2. As lower counts depictednegative ventricular remodeling, this suggests a reparative role for the newly de-scribed Mon2, possibly via myofibroblast deposition and angiogenesis, in contrastto an anticipated inflammatory role.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The aorta has been viewed as a passive distribution manifold for blood whose elasticity allows it to store blood during cardiac ejection (systole), and release it during relaxation (diastole). This capacitance, or compliance, lowers peak cardiac work input and maintains peripheral sanguine irrigation throughout the cardiac cycle. The compliance of the human and canine circulatory systems have been described either as constant throughout the cycle (Toy et al. 1985) or as some inverse function of pressure (Li et al. 1990, Cappelo et al. 1995). This work shows that a compliance value that is higher during systole than diastole (equivalent to a direct function of pressure) leads to a reduction in the energetic input to the cardiovascular system (CV), even when accounting for the energy required to change compliance. This conclusion is obtained numerically, based on a 3-element lumped-parameter model of the CV, then demonstrated in a physical model built for the purpose. It is then shown, based on the numerical and physical models, on analytical considerations of elastic tubes, and on the analysis of arterial volume as a function of pressure measured in vivo (Armentano et al. 1995), that the mechanical effects of a presupposed arterial contraction are consistent with those of energetically beneficial changes in compliance during the cardiac cycle. Although the amount of energy potentially saved with rhythmically contracting arteries is small (mean 0.55% for the cases studied) the importance of the phenomenon lies in its possible relation to another function of the arterial smooth muscle (ASM): synthesis of wall matrix macromolecules. It is speculated that a reduction in the rate of collagen synthesis by the ASM is implicated in the formation of arteriosclerosis. ^

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Background: Cardiac Rehabilitation (CR) has effect on mortality in patients with heart failure (HF) chronic, and the exercise of the treatment of this patient. The most common exercise is ongoing training. Recently we have been studying the effects of interval training, but there is no consensus on the optimal dose of exercise. Objective: To evaluate the effects of interval aerobic training are superior to continuous aerobic training in patients with chronic HF. Methods: The clinical trial evaluated patients through cardiopulmonary test (CPX) and quality of life before and after the RC (3 times / 12 weeks). Patients were randomized into Group Interval Training (GTI - 85% of heart rate reserve - FCR), Continuous Training Group (GTC - 60% of HRR) and control group (CG) who received guidelines. Results: 18 patients were evaluated (mean age 44.7 ± 13.2 years and 35.2 ± 8.9% of left ventricular ejection fraction [LVEF]). Both groups were efficient to increase the peak VO2 and 15.1% (P = 0.02) in GTI and 16.1% (P = 0.01) GTC. As for the quality of life the GTI GTC showed improvement compared to the control group (P = 0.006). Hemodynamic mismatch events during the CPX were reduced after training in more GTC (patients 1 to 4) than in the GTI (5 to 3). Cardiac risk also decreased in the GTC (3 patients left the severe risk to take after training). Conclusion: Continuous training becomes more appropriate for improving fitness with little chance of developing cardiac event patients with chronic HF.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

© The European Society of Cardiology 2015. Funding The project was funded by the Sir Halley Stewart Trust. MINAP is funded by the Health Quality Improvement Partnership (HQIP).

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A recently developed novel biomass fuel pellet, the Q’ Pellet, offers significant improvements over conventional white pellets, with characteristics comparable to those of coal. The Q’ Pellet was initially created at bench scale using a proprietary die and punch design, in which the biomass was torrefied in-situ¬ and then compressed. To bring the benefits of the Q’ Pellet to a commercial level, it must be capable of being produced in a continuous process at a competitive cost. A prototype machine was previously constructed in a first effort to assess continuous processing of the Q’ Pellet. The prototype torrefied biomass in a separate, ex-situ reactor and transported it into a rotary compression stage. Upon evaluation, parts of the prototype were found to be unsuccessful and required a redesign of the material transport method as well as the compression mechanism. A process was developed in which material was torrefied ex-situ and extruded in a pre-compression stage. The extruded biomass overcame multiple handling issues that had been experienced with un-densified biomass, facilitating efficient material transport. Biomass was extruded directly into a novel re-designed pelletizing die, which incorporated a removable cap, ejection pin and a die spring to accommodate a repeatable continuous process. Although after several uses the die required manual intervention due to minor design and manufacturing quality limitations, the system clearly demonstrated the capability of producing the Q’ Pellet in a continuous process. Q’ Pellets produced by the pre-compression method and pelletized in the re-designed die had an average dry basis gross calorific value of 22.04 MJ/kg, pellet durability index of 99.86% and dried to 6.2% of its initial mass following 24 hours submerged in water. This compares well with literature results of 21.29 MJ/kg, 100% pellet durability index and <5% mass increase in a water submersion test. These results indicate that the methods developed herein are capable of producing Q’ Pellets in a continuous process with fuel properties competitive with coal.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Laser micromachining is an important material processing technique used in industry and medicine to produce parts with high precision. Control of the material removal process is imperative to obtain the desired part with minimal thermal damage to the surrounding material. Longer pulsed lasers, with pulse durations of milli- and microseconds, are used primarily for laser through-cutting and welding. In this work, a two-pulse sequence using microsecond pulse durations is demonstrated to achieve consistent material removal during percussion drilling when the delay between the pulses is properly defined. The light-matter interaction moves from a regime of surface morphology changes to melt and vapour ejection. Inline coherent imaging (ICI), a broadband, spatially-coherent imaging technique, is used to monitor the ablation process. The pulse parameter space is explored and the key regimes are determined. Material removal is observed when the pulse delay is on the order of the pulse duration. ICI is also used to directly observe the ablation process. Melt dynamics are characterized by monitoring surface changes during and after laser processing at several positions in and around the interaction region. Ablation is enhanced when the melt has time to flow back into the hole before the interaction with the second pulse begins. A phenomenological model is developed to understand the relationship between material removal and pulse delay. Based on melt refilling the interaction region, described by logistic growth, and heat loss, described by exponential decay, the model is fit to several datasets. The fit parameters reflect the pulse energies and durations used in the ablation experiments. For pulse durations of 50 us with pulse energies of 7.32 mJ +/- 0.09 mJ, the logisitic growth component of the model reaches half maximum after 8.3 us +/- 1.1 us and the exponential decays with a rate of 64 us +/- 15 us. The phenomenological model offers an interpretation of the material removal process.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This laboratory session provides hands-on experience for students to visualize the beating human heart with ultrasound imaging. Simple views are obtained from which students can directly measure important cardiac dimensions in systole and diastole. This allows students to derive, from first principles, important measures of cardiac function, such as stroke volume, ejection fraction, and cardiac output. By repeating the measurements from a subject after a brief exercise period, an increase in stroke volume and ejection fraction are easily demonstrable, potentially with or without an increase in left ventricular end-diastolic volume (which indicates preload). Thus, factors that affect cardiac performance can readily be discussed. This activity may be performed as a practical demonstration and visualized using an overhead projector or networked computers, concentrating on using the ultrasound images to teach basic physiological principles. This has proved to be highly popular with students, who reported a significant improvement in their understanding of Frank-Starling's law of the heart with ultrasound imaging.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present results based on observations of SN 2015H which belongs to the small group of objects similar to SN 2002cx, otherwise known as type Iax supernovae. The availability of deep pre-explosion imaging allowed us to place tight constraints on the explosion epoch. Our observational campaign began approximately one day post-explosion, and extended over a period of about 150 days post maximum light, making it one of the best observed objects of this class to date. We find a peak magnitude of Mr = -17.27± 0.07, and a (Δm15)r = 0.69 ± 0.04. Comparing our observations to synthetic spectra generated from simulations of deflagrations of Chandrasekhar mass carbon-oxygen white dwarfs, we find reasonable agreement with models of weak deflagrations that result in the ejection of ∼0.2 M of material containing ∼0.07 M of 56Ni. The model light curve however, evolves more rapidly than observations, suggesting that a higher ejecta mass is to be favoured. Nevertheless, empirical modelling of the pseudo-bolometric light curve suggests that ≲ 0.6 M of material was ejected, implying that the white dwarf is not completely disrupted, and that a bound remnant is a likely outcome.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Hypervelocity stars (HVSs) travel with velocities so high that they exceed the escape velocity of the Galaxy. Several acceleration mechanisms have been discussed. Only one HVS (US 708, HVS 2) is a compact helium star. Here we present a spectroscopic and kinematic analysis of US 708. Traveling with a velocity of ∼1200 kilometers per second, it is the fastest unbound star in our Galaxy. In reconstructing its trajectory, the Galactic center becomes very unlikely as an origin, which is hardly consistent with the most favored ejection mechanism for the other HVSs. Furthermore, we detected that US 708 is a fast rotator. According to our binary evolution model, it was spun-up by tidal interaction in a close binary and is likely to be the ejected donor remnant of a thermonuclear supernova.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Heart failure (HF) is an increasingly prevalent and costly multifactorial syndrome with high morbidity and mortality rates. The exact pathophysiological mechanisms leading to the development of HF are not completely understood. Several emerging paradigms implicate cardiometabolic risk factors, inflammation, endothelial dysfunction, myocardial fibrosis, and myocyte dysfunction as key factors in the gradual progression from a healthy state to HF. Inflammation is now a recognized factor in disease progression in HF and a therapeutic target. Furthermore, the monocyte-platelet interaction has been highlighted as an important pathophysiological link between inflammation, thrombosis, endothelial activation, and myocardial malfunction. The contribution of monocytes and platelets to acute cardiovascular injury and acute HF is well established. However, their role and interaction in the pathogenesis of chronic HF are not well understood. In particular, the cross talk between monocytes and platelets in the peripheral circulation and in the vicinity of the vascular wall in the form of monocyte-platelet complexes (MPCs) may be a crucial element, which influences the pathophysiology and progression of chronic heart disease and HF. In this review, we discuss the role of monocytes and platelets as key mediators of cardiovascular inflammation in HF, the mechanisms of cell activation, and the importance of monocyte-platelet interaction and complexes in HF pathogenesis. Finally, we summarize recent information on pharmacological inhibition of inflammation and studies of antithrombotic strategies in the setting of HF that can inform opportunities for future work. We discuss recent data on monocyte-platelet interactions and the potential benefits of therapy directed at MPCs, particularly in the setting of HF with preserved ejection fraction.