904 resultados para Earth dams
Resumo:
A series of rare earth hydroxides and oxides ultrafine powders have been prepared by precipitation method using alcohol as dispersive and protective reagent. It was first to find that the crystallite size of cubic rare earth oxides had Lanthanide shrinking effect,but average crystal lattice distortion rate possessed lanthanide swelling effect;the change of diffraction intensity with atomic number presented an inverted W type, and double peaks structure was formed.
Resumo:
Three new oxides Sm2SrCo2O7, Sm2BaCo2O7 and Gd2SrCo2O7 have been successfully synthesized by a solid state reaction method.The X - Ray diffraction spectra show that they are all isostructural with Sr8Ti 2O7, Ln2SrCo2O7(Ln=Sm, Gd) crystallized in the tetra
Resumo:
Energy transfer phenomena have been observed by activating the oxyapatite host-lattice Ca2Gd8(SiO4)6O2 with Eu3+, Tb3+, Dy3+, Sm3+. This is based on the energy migration in the Gd3+ sublattice and trapping by the activators. The trapping efficiency for G
Resumo:
Rare earth complexes of m-nitrobenzoic acid (LnL3.2H2O, Ln = La-Lu and Y, except Pm, HL = m-nitrobenzoic acid) were synthesized and characterized by elemental analysis, chemical analysis, IR spectroscopy and X-ray diffraction analysis. The dehydration beh
Resumo:
Rare earth trifluoroacetates, Ln(CF3CO2)(3) (Ln = thirteen rare earth elements), combined with R(n)AlH(3-n) (R = methyl, octyl, n = 3; R = ethyl, i-Butyl, n = 2, 3) were used as catalysts for the polymerization of tetrahydrofuran (THF). The activity increased by adding propylene oxide (PO), as a promoter, to the polymerization system, producing high molecular weight polytetrahydrofuran (PTHF). The effects of Ln, PO/Ln, and Al/Ln, and others on the polymerization of THF were also studied. (C) 1993 John Wiley & Sons, Inc.
Resumo:
In this article, we report the rare earth ion selective electrodes developed in our laboratory. Rare earth containing functional copolymers, rare earth oxides, and chelates have been used as active materials. Methods for preparing raw materials, behavior of electrodes, and application of rare earth ion selective electrodes in flow injection analysis have been discussed as well.
Resumo:
REL3.H2O (RE=Y, La is similar to Lu; HL = o-chlorobenzoic acid) were synthesized. Their thermal decomposition and IR spectra were studied. The crystal structures of the complexes of neodymium, terbium and lutetium were determined by X-ray diffraction method. They crystallize in the monoclinic space group P2(1)/n and show infinite chain structures. The coordination numbers of rare earth ions are nine.
Resumo:
At room temperature, the Bi3+ ion shows broad band characters of its luminescence in Ca2B2O5, M3B2O6 ( M=Ca,Sr ) and SrB4O7. The maxima of the Bi3+ S-1(0)-->P-3(1) absorption bands are located in the range of 240-300nm, but the energy variation of the corresponding P-3(1)-->S-1(0) emissions is very large. The maxima of these emission bands change from 350nm in Ca3B2O6;Bi3+ to 586nm in SrB4O7:Bi3+. The Stokes shift of the Bi3+ luminescence increases from 6118 cm-1, in Ca2B2O5:Bi3+, to 24439 cm-1, in SrB4O7:Bi3+. The emission intensity of the Bi3+ luminescence increases with the decreasing Stokes shift. It has been found that in Ca2B2O5, the Bi3+ ion could transfer its excitation energy to the R3+ ions ( R=Eu, Dy, Sm, Tb ) , but in, Ca3B2O6 and Sr3B2O6, only Bi3+-->Eu3+ was observed. No energy transfer from Bi3+ to R3+ was detected in SrB4O7.
Resumo:
The complexes of Ln(L-Pro)s(H2O)2(ClO4)3(Ln = Pr, Nd and Er. L-Pro = L-Proline) were synthesized and characterized by elemental analysis, IR. spectra and thermal analysis. The singal crystal Pr2(L-Pro)6(H2O)4(ClO4)6 Was also obtained. The crystal belongs to monoclinic, P2(1), a = 0.9879 (3) nm, b = 2.1883 (4) nm, c = 1.3393 (2)nm, beta = 91.23(2)-degrees, V = 2.895(1) nm3, Z = 2. R = 0.035 for 5032 observed reflections. The coordination polyhedron of Pr(III) ion comprises six oxygen atoms from L-Pro molecules and two water molecules. Each L-Pro molecule coordinates to two Pr(III) ions through its carboxyl group which serves as a bridging bidentate ligand to form onedimensional chain structure.
Resumo:
REL3(RE=Y, La approximately Lu; HL = m-methylbenzoic acid) were synthesized, and their IR spectra were studied. The crystal structures of the complexes of neodymium and terbium were determined by X-ray diffraction method. Both of them crystallize in the monoclinic space group P2(1)/n and show infinite chain structures. The coordination numbers are nine (Nd3+) and eight (Tb3+), respectively.
Resumo:
The H+, Li+, Na+, K+, Mg2+, Ca2+ and Ba2+ ion transfer across the water/nitrobenzene (NB) and water/1,2-dichloroethane (DCE) interfaces, facilitated by the ionophore ETH157, has been investigated by cyclic voltammetry (CV). The mechanism of the transfer process has been discussed, and the diffusion coefficients and the stability constants of the complexes formed in the nitrobenzene phase have been determined.
Resumo:
A study has been made of the crystallization behavior of polypropylene (PP) filled with rare earth oxides under isothermal conditions. These rare earth oxides include lanthanum oxide (La2O3), yttrium oxide (Y2O3), and a mixture of rare earth oxides containing 70% Y2O3 (Y2O3-0.70). A differential scanning calorimeter was used to monitor the energetics of the crystallization process from the melt. During isothermal crystallization, dependence of the relative degree of crystallinity on time was described by the Avrami equation. It has been shown that the addition of any of the three rare earth oxides causes a considerable increase in the overall crystallization rate of PP but does not influence the mechanism of nucleation and growth of the PP crystals. The analysis of kinetic data according to nucleation theories shows that the increase in crystallization rate of PP in the composites is due to the decrease in surface energy of the extremity surfaces. The relative contents of the beta-form in the composites are somewhat higher than that in the plain PP. However, the contents of the beta-form in the plain PP and the composites are all very low relative to those of the alpha-form and the influence of the formation of the beta-form on the crystallization kinetics can be neglected.