980 resultados para EQUATORIAL WAVES
Resumo:
Sedimentation in the central Pacific during the Jurassic and Early Cretaceous was dominated by abundant biogenic silica. A synthesis of the stratigraphy, lithology, petrology, and geochemistry of the radiolarites in Sites 801 and 800 documents the sedimentation processes and trends in the equatorial central Pacific from the Middle Jurassic through the Early Cretaceous. Paleolatitude and paleodepth reconstructions enable comparisons with previous DSDP sites and identification of the general patterns of sedimentation over a wide region of the Pacific. Clayey radiolarites dominated sedimentation on Pacific oceanic crust within tropical paleolatitudes from at least the latest Bathonian through Tithonian. Radiolarian productivity rose to a peak within 5° of the paleoequator, where accumulation rates of biogenic silica exceeded 1000 g/cm**2/m.y. Wavy-bedded radiolarian cherts developed in the upper Tithonian at Site 801 coinciding with the proximity of this site to the paleoequator. Ribbon-bedding of some radiolarian cherts exposed on Pacific margins may have formed from silicification of radiolarite deposited near the equatorial high-productivity zone where radiolarian/clay ratios were high. Silicification processes in sediments extensively mixed by bioturbation or enriched in clay or carbonate generally resulted in discontinuous bands or nodules of porcellanite or chert, e.g., a "knobby" radiolarite. Ribbon-bedded cherts require primary alternations of radiolarian-rich and clay-rich layers as an initial structural template, coupled with abundant biogenic silica in both layers. During diagenesis, migration of silica from clay-rich layers leaves radiolarian "ghosts" or voids, and the precipitation in adjacent radiolarite layers results in silicification of the inter-radiolarian matrix and infilling of radiolarian tests. Alternations of claystone and clay-rich radiolarian grainstone were deposited during the Callovian at Site 801 and during the Berriasian-Valanginian at Site 800, but did not silicify to form bedded chert. Carbonate was not preserved on the Pacific oceanic floor or spreading ridges during the Jurassic, perhaps due to an elevated level of dissolved carbon dioxide. During the Berriasian through Hauterivian, the carbonate compensation depth (CCD) descended to approximately 3500 m, permitting the accumulation of siliceous limestones at near-ridge sites. Carbonate accumulation rates exceeded 1500 g/cm**2/m.y. at sites above the CCD, yet there is no evidence of an equatorial carbonate bulge during the Early Cretaceous. In the Barremian and Aptian, the CCD rose, coincident with the onset of mid-plate volcanic activity. Abundance of Fe and Mn and the associated formation of authigenic Fe-smectite clays was a function of proximity to the spreading ridges, with secondary enrichments occurring during episodes of spreading-center reorganizations. Callovian radiolarite at Site 801 is anomalously depleted in Mn, which resulted either from inhibited precipitation of Mn-oxides by lower pH of interstitial waters induced by high dissolved oceanic CO2 levels or from diagenetic mobilization of Mn. Influx of terrigenous (eolian) clay apparently changed with paleolatitude and geological age. Cyclic variations in productivity of radiolarians and of nannofossils and in the influx of terrigenous clay are attributed to Milankovitch climatic cycles of precession (20,000 yr) and eccentricity (100,000 yr). Diagenetic redistribution of biogenic silica and carbonate enhanced the expression of this cyclic sedimentation. Jurassic and Lower Cretaceous sediments were deposited under oxygenated bottom-water conditions at all depths, accompanied by bioturbation and pervasive oxidation of organic carbon and metals. Despite the more "equable" climate conditions of the Mesozoic, the super-ocean of the Pacific experienced adequate deep-water circulation to prevent stagnation. Efficient nutrient recycling may have been a factor in the abundance of radiolarians in this ocean basin.
Resumo:
Pore-water samples from the equatorial sedimentary bulge area show reversals in depth profiles of 87Sr/86Sr ratios at the sediment/basement interface. Results of this work support inferences made from previous pore-water data (from DSDP drilling in the area) that large-scale horizontal advection of seawater has occurred through the basement underlying the thick sedimentary sequence in this region. The area of apparent advection includes the eastern part of the equatorial high-productivity zone and part of the Guatemala Basin. We attempted to find links between the observed near-basement reversals in pore-water chemistry and sedimentary thickness, age, and topography of the area. Most of the sites that show horizontal advection have disturbed basement topography or outcrops within 10 to 20 km, suggesting that the cooling effects of outcrops may extend for at least 20 km horizontally. Heat-flow data from the area were compared to determine whether sites showing near-bottom chemistry reversals were consistent with areas of low conductive heat flow. This was generally true for the area of the sedimentary bulge and Guatemala Basin. Not enough pore-water data from the Nazca Plate were available to establish any reliable systematics. Because the high-productivity area is well-sealed from hydrothermal circulation, the missing heat must be lost by horizontal advective heat transport. From profiles of strontium isotopes and other elements that show departure from seawater values with increasing depth in the sediments, but return to seawater values near the basement, it appears that water flows relatively freely through much of the oceanic crust, even when sealed by considerable sedimentary cover.
Resumo:
Sediments recovered during Ocean Drilling Program (ODP) Leg 138 in the eastern equatorial Pacific Ocean were analyzed for variations in eolian accumulation rate and mean grain-size. Latitudinal and temporal patterns of these parameters showed important changes in the intensity of atmospheric circulation and eolian flux associated with the intertropical convergence zone (ITCZ) and suggested that eolian input parameters could be used to define its paleoposition through time. Modern atmospheric circulation in the equatorial region is weakest in the intertropical convergence zone and increases as the trade winds are approached to the north and south. Thus, the expected spatial pattern of eolian grain size would have the finest material deposited beneath the ITCZ and a coarsening of material in both directions away from this zone. Sediments from ODP Leg 138 show this pattern for much of the Pleistocene and Pliocene but, prior to about 4 Ma, begin to lose the northern coarse component suggesting that the ITCZ was located north of its present position during the late Miocene. Eolian flux records also show a latitudinal pattern of deposition associated with the position of the ITCZ that, similar to eolian grain-size variability, suggests a more northerly position of the ITCZ during the late Miocene. Overall, the regional input of eolian material to the equatorial Pacific has decreased throughout the late Neogene. This reduction in eolian input reflects climatic changes to relatively wetter conditions in the continental eolian source regions beginning during the late Pliocene.
Resumo:
The monograph has been written on the base of data obtained from samples and materials collected during the 19-th cruise of RV ''Akademik Vernadsky'' to the Northern and Equatorial Indian Ocean. Geological features of the region (stratigraphy, tectonic structure, lithology, distribution of ore-forming components in bottom sediments, petrography of igneous rocks, etc.) are under consideration. Regularities of trace element concentration in Fe-Mn nodules, nodule distribution in bottom sediments, and engineering-geological properties of sediments within the nodule fields have been studied. Much attention is paid to ocean crust rocks. The wide range of ore mineralization (magnetite, chromite, chalcopyrite, pyrite, pentlandite, and other minerals) has been ascertained.
Resumo:
The Asian monsoon system governs seasonality and fundamental environmental characteristics in the study area from which two distinct peculiarities are most notable: upwelling and convective mixing in the Arabian Sea and low surface salinity and stratification in the Bay of Bengal due to high riverine input and monsoonal precipitation. The respective oceanography sets the framework for nutrient availability and productivity. Upwelling ensures high nitrate concentration with temporal/spatial Si limitation; freshwater-induced stratification leads to reduced nitrogen input from the subsurface but Si enrichment in surface waters. Ultimately, both environments support high abundance of diatoms, which play a central role in the export of organic matter. It is speculated that, additional to eddy pumping, nitrogen fixation is a source of N in stratified waters and contributes to the low-d15N signal in sinking particles formed under riverine impact. Organic carbon fluxes are best correlated to opal but not to carbonate, which is explained by low foraminiferal carbonate fluxes within the river-impacted systems. This observation points to the necessity of differentiating between carbonate sources for carbon flux modeling. As evident from a compilation of previously published and new data on labile organic matter composition (amino acids and carbohydrates), organic matter fluxes are mainly driven by direct input from marine production, except the site off Pakistan where sedimentary input of (marine) organic matter is dominant during the NE monsoon. The explanation of apparently different organic carbon export efficiency calls for further investigations of, for example, food web structure and water column processes.
Resumo:
This thesis examines the closure history of the Central American Seaway (CAS) and its effect on changes in ocean circulation and climate during the time interval from ~6 - 2.5 Ma. It was accomplished within the DFG Research Unit "Impact of Gateways on Ocean Circulation, Climate and Evolution" at the University of Kiel. Proxy records from Ocean Drilling Program (ODP) Sites 999 and 1000 (Caribbean), and from ODP Sites 1237, 1239 and 1241 (low-latitude east Pacific) are developed and examined. In addition, previously established proxy data from Atlantic Sites 925/926 (Ceara Rise) and 1006 (western Great Bahama Bank) and from two east Pacific sites (851, 1236) are included for interpretations. The main objectives of this study are (1) to acquire a consistent stratigraphic framework for all sites, (2) to reconstruct Pliocene changes in Caribbean and tropical east Pacific upper ocean water masses (i.e. temperature, salinity, thermocline depth), and (3) to identify potential underlying forcing mechanisms.
Resumo:
Six deep sea cores from the eastern equatorial Pacific (EEP) were analyzed for planktonic foraminifera and stable isotopes in order to reconstruct sea surface temperatures (SST) for the last 40 ka. South of the Equatorial Front the abundance of Globorotalia inflata increased, and SST decreased by >5°C (core ODP846B), creating a stronger SST meridional gradient and advection of the Peru Current than present for the ~16-35 ka interval. A sharper SST meridional gradient forced stronger Choco jet events and a moisture increase in western Colombia, which supplied, through the San Juan River and the south-flowing equatorial and the Peru-Chile countercurrents, abundant hemipelagic quartz over the northern Peru basin (core TR163-31B). The Choco jet, and its associated mesoscale convective cells, provoked an increase in snow precipitation over the Central Cordillera of Colombia and the advance of the Murillo glacier. In synchrony with the intensified Choco jet events, the "dry island" effect over the Eastern Cordillera of Colombia intensified, and the level of Fuquene Lake dropped.
Resumo:
During Ocean Drilling Program (ODP) Leg 202, Pleistocene calcareous nannofossils were recovered from several sites situated between 16°S and 8°N latitude. These sites are under the influence of coastal or equatorial upwelling and offer the opportunity to refine biostratigraphic patterns using alternative events from those used in "standard" zonations (Martini, 1971; Okada and Bukry, 1980, doi:10.1016/0377-8398(80)90016-X). Differences in the positions of the studied sites determine changes in sedimentation rates, which range from ~0.8 to 6 cm/k.y. (Shipboard Scientific Party, 2003, doi:10.2973/odp.proc.ir.202.101.2003). These differences are due to the proximity to the continent and to organic production.
Resumo:
The solution rate of biogenic opal in near-surface sediments in the Central Equatorial Pacific is three to eight orders of magnitude lower than similar acid-cleaned samples. Iron, magnesium and calcium aluminosilicates may be the minerals which are forming on the surface of the opal and reducing its solution rate. The scale height of the system studied suggests that diffusive and not advective processes are primarily responsible for the removal of dissolved silica in sediments. Solution budget calculations for this area suggest that 90-99 per cent of the biogenic opal produced in surface waters dissolves before reaching the sediment-water interface; an additional amount dissolves within the sediment and diffuses into bottom waters leaving 0.05-0.15 per cent of the original amount of opal produced by organisms in the sedimentary record. The relative solution potential of the upper 1000 m of the water column varies by more than an order of magnitude from the Antarctic to Equator and may have a pronounced effect on the accumulation rate of biogenic opal in underlying sediments.
Resumo:
Particle mixing rates have been determined for 5 South Atlantic/Antarctic and 3 equatorial Pacific deep-sea cores using excess 210Pb and 32Si measurements. Radionuclide profiles from these siliceous, calcareous, and clay-rich sediments have been evaluated using a steady state vertical advection diffusion model. In Antarctic siliceous sediments210Pb mixing coefficients (0.04-0.16 cm**2/y) are in reasonable agreement with the 32Si mixing coefficient (0.2 or 0.4 cm**2/y, depending on 32Si half-life). In an equatorial Pacific sediment core, however, the 210Pb mixing coefficient (0.22 cm**2/y) is 3-7 times greater than the 32Si mixing coefficient (0.03 or 0.07 cm**2/y). The difference in 210Pb and 32Si mixing rates in the Pacific sediments results from: (1) non-steady state mixing and differences in characteristic time and depth scales of the two radionuclides, (2) preferential mixing of fine-grained clay particles containing most of the 210Pb activity relative to coarser particles (large radiolaria) containing the 32Si activity, or (3) the supply of 222Rn from the bottom of manganese nodules which increases the measured excess 210Pb activity (relative to 226Ra) at depth and artificially increases the 210Pb mixing coefficient. Based on 32Si data and pore water silica profiles, dissolution of biogenic silica in the sediment column appears to have a minor effect on the 32Si profile in the mixed layer. Deep-sea particle mixing rates reported in this study and the literature do not correlate with sediment type, sediment accumulation rate, or surface productivity. Based on differences in mixing rate among three Antarctic cores collected within 50 km of each other, local variability in the intensity of deep-sea mixing appears to be as important as regional differences in sediment properties.
Resumo:
Laboratory measurements of ultrasonic velocity (VP, VS) and attenuation (QP**-1, QS**-1) in deep-sea carbonate sequences at DSDP Sites 288, 289 and 316 in the equatorial Pacific were made in conjunction with studies of sediment density, porosity and pore geometry in order to investigate the role of diagenesis in the development of physical properties. Bulk porosity decrease appears to be related more significantly to depth of burial than to age of strata. Both depth of burial and age, however, are important factors controlling the modal pore diameter. In deep-burial diagenesis the modification of pore geometry is influenced by the presence of silica during diagenesis. In carbonate sequences at the three DSDP sites studied, shear wave attenuation anisotropy (QSHH**-1/QSHV**-1) correlates with the shear wave velocity anisotropy. Pore orientation, resulting from overburden pressure and other deep-burial diagenetic processes, is an important factor controlling the increase of VP anisotropy with age and depth of burial. On the basis of observed minor changes in anisotropy values with increasing pressure for some samples, other contributions to VP anisotropy such as grain orientation and bedding lamination cannot be ruled out.