763 resultados para Dyson, Matt
Resumo:
O jornalismo é um dos principais meios de oferta de temas para a discussão e formação da opinião pública, porém depende de um sistema técnico para ser transmitido. Durante mais de cem anos as informações produzidas pela imprensa foram emitidas, armazenadas, transmitidas e recebidas pelos chamados veículos de comunicação de massa que utilizam a rede centralizada cujas características estão na escassez material, produção em série e massificação. Esse sistema separa no tempo e no espaço emissores e receptores criando uma relação desigual de força em que as grandes empresas controlaram o fluxo informativo, definindo quais fatos seriam veiculados como notícia. Em 1995, a internet cuja informação circula sob a tecnologia da rede distribuída, foi apropriada pela sociedade, alterando a forma de produção, armazenamento e transmissão de informação. A tecnologia despertou a esperança de que esta ferramenta poderia proporcionar uma comunicação mais dialógica e democrática. Mas aos poucos pode-se perceber novas empresas se apropriando da tecnologia da rede distribuída sob a qual circula a internet, gerando um novo controle do fluxo informativo. Realizou-se nessa pesquisa um levantamento bibliográfico para estabelecer uma reflexão crítica dos diferentes intermediários entre fato e a notícia tanto da rede centralizada como na rede distribuída, objetivando despertar uma discussão que possa oferecer novas ideias para políticas, bem como alternativas para uma comunicação mais democrática e mais libertária.
Cooperation between the activin and Wnt pathways in the spatial control of organizer gene expression
Resumo:
The normal expression pattern of the Wnt responsive homeobox gene Siamois is restricted to the dorso-vegetal region of the Xenopus embryo. Because the Wnt signaling pathway (via β-catenin) is active on the entire dorsal side of the early embryo, we have asked why Siamois expression is not seen in the dorsal ectoderm. Only Wnt signaling, via activation of β-catenin, can induce directly Siamois, and signaling via the SMAD1 (BMP2/4) or SMAD2 (activin/Vg-1) pathways cannot. We now directly show that the SMAD2 pathway can cooperate with the Wnt pathway to induce expression of Siamois much more strongly than the Wnt pathway alone, in normal embryos. We demonstrate the significance of this cooperation in normal embryos by blocking the SMAD2 signaling pathway with a dominant negative activin receptor. The activin dominant negative receptor blocks this cooperative effect and reduces the expression of Siamois by threefold in early embryos. Furthermore, we find that this cooperative relationship between the SMAD2 and Wnt pathways is reciprocal. Thus, in normal embryos, the Wnt pathway can enhance induction, by the SMAD 2 pathway, of the organizer genes Gsc and Chd but not the pan-mesodermal marker genes Xbra and Eomes. We conclude that the Wnt and SMAD2 signaling pathways cooperate to induce the expression of Spemann-organizer specific genes and so help to localize their spatial expression.
Resumo:
Evidence is growing to support a functional role for the prion protein (PrP) in copper metabolism. Copper ions appear to bind to the protein in a highly conserved octapeptide repeat region (sequence PHGGGWGQ) near the N terminus. To delineate the site and mode of binding of Cu(II) to the PrP, the copper-binding properties of peptides of varying lengths corresponding to 2-, 3-, and 4-octarepeat sequences have been probed by using various spectroscopic techniques. A two-octarepeat peptide binds a single Cu(II) ion with Kd ≈ 6 μM whereas a four-octarepeat peptide cooperatively binds four Cu(II) ions. Circular dichroism spectra indicate a distinctive structuring of the octarepeat region on Cu(II) binding. Visible absorption, visible circular dichroism, and electron spin resonance spectra suggest that the coordination sphere of the copper is identical for 2, 3, or 4 octarepeats, consisting of a square-planar geometry with three nitrogen ligands and one oxygen ligand. Consistent with the pH dependence of Cu(II) binding, proton NMR spectroscopy indicates that the histidine residues in each octarepeat are coordinated to the Cu(II) ion. Our working model for the structure of the complex shows the histidine residues in successive octarepeats bridged between two copper ions, with both the Nɛ2 and Nδ1 imidazole nitrogen of each histidine residue coordinated and the remaining coordination sites occupied by a backbone amide nitrogen and a water molecule. This arrangement accounts for the cooperative nature of complex formation and for the apparent evolutionary requirement for four octarepeats in the PrP.
Resumo:
General base catalysis supplied by the histidine-12 (H-12) residue of ribonuclease (RNase) A has long been appreciated as a major component of the catalytic power of the enzyme. In an attempt to harness the catalytic power of a general base into antibody catalysis of phosphodiester bond hydrolysis, the quaternary ammonium phosphate 1 was used as a bait and switch hapten. Based on precedence, it was rationalized that this positively charged hapten could induce a counter-charged residue in the antibody binding site at a locus suitable for it to deprotonate the 2′-hydroxyl group of the anhydroribitol phosphodiester substrate 2. After murine immunization with hapten 1, mAb production yielded a library of 35 antibodies that bound to a BSA-1 conjugate. From this panel, two were found to catalyze the cyclization-cleavage of phosphodiester 2. Kinetic studies at pH 7.49 (Hepes, 20 mM) and 25°C showed that the most active antibody, MATT.F-1, obeyed classical Michaelis–Menten kinetics with a Km = 104 μM, a kcat = 0.44 min−1, and a kcat/kuncat = 1.7 × 103. Hapten 1 stoichiometrically inhibits the catalytic activity of the antibody. MATT.F-1 is the most proficient antibody–catalyst (1.6 × 107 M−1) yet generated for the function of phosphodiester hydrolysis and emphasizes the utility of the bait and switch hapten paradigm when generating antibody catalysts for processes for which general-base catalysis can be exploited.
Resumo:
The prion diseases seem to be caused by a conformational change of the prion protein (PrP) from the benign cellular form PrPC to the infectious scrapie form PrPSc; thus, detailed information about PrP structure may provide essential insights into the mechanism by which these diseases develop. In this study, the secondary structure of the recombinant Syrian hamster PrP of residues 29–231 [PrP(29–231)] is investigated by multidimensional heteronuclear NMR. Chemical shift index analysis and nuclear Overhauser effect data show that PrP(29–231) contains three helices and possibly one short β-strand. Most striking is the random-coil nature of chemical shifts for residues 30–124 in the full-length PrP. Although the secondary structure elements are similar to those found in mouse PrP fragment PrP(121–231), the secondary structure boundaries of PrP(29–231) are different from those in mouse PrP(121–231) but similar to those found in the structure of Syrian hamster PrP(90–231). Comparison of resonance assignments of PrP(29–231) and PrP(90–231) indicates that there may be transient interactions between the additional residues and the structured core. Backbone dynamics studies done by using the heteronuclear [1H]-15N nuclear Overhauser effect indicate that almost half of PrP(29–231), residues 29–124, is highly flexible. This plastic region could feature in the conversion of PrPC to PrPSc by template-assisted formation of β-structure.
Resumo:
The downstream prion-like protein (doppel, or Dpl) is a paralog of the cellular prion protein, PrPC. The two proteins have ≈25% sequence identity, but seem to have distinct physiologic roles. Unlike PrPC, Dpl does not support prion replication; instead, overexpression of Dpl in the brain seems to cause a completely different neurodegenerative disease. We report the solution structure of a fragment of recombinant mouse Dpl (residues 26–157) containing a globular domain with three helices and a small amount of β-structure. Overall, the topology of Dpl is very similar to that of PrPC. Significant differences include a marked kink in one of the helices in Dpl, and a different orientation of the two short β-strands. Although the two proteins most likely arose through duplication of a single ancestral gene, the relationship is now so distant that only the structures retain similarity; the functions have diversified along with the sequence.
Resumo:
Müllerian Inhibiting Substance (MIS) expression is inversely proportional to the serum concentration of testosterone in males after birth and in vitro studies have shown that MIS can lower testosterone production by Leydig cells. Also, mice overexpressing MIS exhibited Leydig cell hypoplasia and lower levels of serum testosterone, but it is not clear whether this is a result of MIS affecting the development of Leydig cells or their capacity to produce testosterone. To examine the hypothesis that MIS treatment will result in decreased testosterone production by mature Leydig cells in vivo, we treated luteinizing hormone (LH)-stimulated adult male rats and mice with MIS and demonstrated that it can lead to a several-fold reduction in testosterone in serum and in testicular extracts. There was also a slight decrease in 17-OH-progesterone compared to the more significant decrease in testosterone, suggesting that MIS might be regulating the lyase activity of cytochrome P450c17 hydroxylase/lyase (Cyp17), but not its hydroxylase activity. Northern analysis showed that, in both MIS-treated rats and mice, the mRNA for Cyp17, which catalyzes the committed step in androgen synthesis, was down-regulated. In rats, the mRNA for cytochrome P450 side-chain cleavage (P450scc) was also down-regulated by MIS. This was not observed in mice, indicating that there might be species-specific regulation by MIS of the enzymes involved in the testosterone biosynthetic pathway. Our results show that MIS can be used in vivo to lower testosterone production by mature rodent Leydig cells and suggest that MIS-mediated down-regulation of the expression of Cyp17, and perhaps P450scc, contributes to that effect.
Resumo:
This paper reviews food (especially cereal) production trends and prospects for the world and its main regions. Despite fears to the contrary, in recent years we have seen continued progress toward better methods of feeding humanity. Sub-Saharan Africa is the sole major exception. Looking to the future, this paper argues that the continuation of recent cereal yield trends should be sufficient to cope with most of the demographically driven expansion of cereal demand that will occur until the year 2025. However, because of an increasing degree of mismatch between the expansion of regional demand and the potential for supply, there will be a major expansion of world cereal (and noncereal food) trade. Other consequences for global agriculture arising from demographic growth include the need to use water much more efficiently and an even greater dependence on nitrogen fertilizers (e.g., South Asia). Farming everywhere will depend more on information-intensive agricultural management procedures. Moreover, despite continued general progress, there still will be a significant number of undernourished people in 2025. Signs of heightened harvest variability, especially in North America, are of serious concern. Thus, although future general food trends are likely to be positive, in some respects we also could be entering a more volatile world.