976 resultados para Dynamic texture segmentation
Resumo:
Abstract One requirement for psychotherapy research is an accurate assessment of therapeutic interventions across studies. This study compared frequency and depth of therapist interventions from a dynamic perspective across four studies, conducted in four countries, including three treatment arms of psychodynamic psychotherapy, and one each of psychoanalysis and CBT. All studies used the Psychodynamic Intervention Rating Scales (PIRS) to identify 10 interventions from transcribed whole sessions early and later in treatment. The PIRS adequately categorized all interventions, except in CBT (only 91-93% categorized). As hypothesized, interpretations were present in all dynamic therapies and relatively absent in CBT. Proportions of interpretations increased over time. Defense interpretations were more common than transference interpretations, which were most prevalent in psychoanalysis. Depth of interpretations also increased over time. These data can serve as norms for measuring where on the supportive-interpretive continuum a dynamic treatment lies, as well as identify potentially mutative interventions for further process and outcome study.
Resumo:
Mosquito community composition in dynamic landscapes from the Atlantic Forest biome (Diptera, Culicidae). Considering that some species of Culicidae are vectors of pathogens, both the knowledge of the diversity of the mosquito fauna and how some environment factors influence in it, are important subjects. In order to address the composition of Culicidae species in a forest reserve in southern Atlantic Forest, we compared biotic and abiotic environmental determinants and how they were associated with the occurrence of species between sunset and sunrise. The level of conservation of the area was also considered. The investigation was carried out at Reserva Natural do Morro da Mina, in Antonina, state of Paraná, Brazil. We performed sixteen mosquito collections employing Shannon traps at three-hour intervals, from July 2008 to June 2009. The characterization of the area was determined using ecological indices of diversity, evenness, dominance and similarity. We compared the frequency of specimens with abiotic variables, i.e., temperature, relative humidity and pluviosity. Seven thousand four hundred ten mosquito females were captured. They belong to 48 species of 12 genera. The most abundant genera were Anopheles, Culex, Coquillettidia, Aedes and Runchomyia. Among the species, the most abundant was Anopheles cruzii, the primary vector of Plasmodium spp. in the Atlantic Forest. Results of the analyses showed that the abiotic variables we tested did not influence the occurrence of species, although certain values suggested that there was an optimum range for the occurrence of culicid species. It was possible to detect the presence of species of Culicidae with different epidemiologic profiles and habitat preference.
Resumo:
We propose a method for brain atlas deformation in the presence of large space-occupying tumors, based on an a priori model of lesion growth that assumes radial expansion of the lesion from its starting point. Our approach involves three steps. First, an affine registration brings the atlas and the patient into global correspondence. Then, the seeding of a synthetic tumor into the brain atlas provides a template for the lesion. The last step is the deformation of the seeded atlas, combining a method derived from optical flow principles and a model of lesion growth. Results show that a good registration is performed and that the method can be applied to automatic segmentation of structures and substructures in brains with gross deformation, with important medical applications in neurosurgery, radiosurgery, and radiotherapy.
Resumo:
Climate science indicates that climate stabilization requires low GHG emissions. Is thisconsistent with nondecreasing human welfare?Our welfare or utility index emphasizes education, knowledge, and the environment. Weconstruct and calibrate a multigenerational model with intertemporal links provided by education,physical capital, knowledge and the environment.We reject discounted utilitarianism and adopt, first, the Pure Sustainability Optimization (orIntergenerational Maximin) criterion, and, second, the Sustainable Growth Optimization criterion,that maximizes the utility of the first generation subject to a given future rate of growth. We applythese criteria to our calibrated model via a novel algorithm inspired by the turnpike property.The computed paths yield levels of utility higher than the level at reference year 2000 for allgenerations. They require the doubling of the fraction of labor resources devoted to the creation ofknowledge relative to the reference level, whereas the fractions of labor allocated to consumptionand leisure are similar to the reference ones. On the other hand, higher growth rates requiresubstantial increases in the fraction of labor devoted to education, together with moderate increasesin the fractions of labor devoted to knowledge and the investment in physical capital.
Resumo:
Atlas registration is a recognized paradigm for the automatic segmentation of normal MR brain images. Unfortunately, atlas-based segmentation has been of limited use in presence of large space-occupying lesions. In fact, brain deformations induced by such lesions are added to normal anatomical variability and they may dramatically shift and deform anatomically or functionally important brain structures. In this work, we chose to focus on the problem of inter-subject registration of MR images with large tumors, inducing a significant shift of surrounding anatomical structures. First, a brief survey of the existing methods that have been proposed to deal with this problem is presented. This introduces the discussion about the requirements and desirable properties that we consider necessary to be fulfilled by a registration method in this context: To have a dense and smooth deformation field and a model of lesion growth, to model different deformability for some structures, to introduce more prior knowledge, and to use voxel-based features with a similarity measure robust to intensity differences. In a second part of this work, we propose a new approach that overcomes some of the main limitations of the existing techniques while complying with most of the desired requirements above. Our algorithm combines the mathematical framework for computing a variational flow proposed by Hermosillo et al. [G. Hermosillo, C. Chefd'Hotel, O. Faugeras, A variational approach to multi-modal image matching, Tech. Rep., INRIA (February 2001).] with the radial lesion growth pattern presented by Bach et al. [M. Bach Cuadra, C. Pollo, A. Bardera, O. Cuisenaire, J.-G. Villemure, J.-Ph. Thiran, Atlas-based segmentation of pathological MR brain images using a model of lesion growth, IEEE Trans. Med. Imag. 23 (10) (2004) 1301-1314.]. Results on patients with a meningioma are visually assessed and compared to those obtained with the most similar method from the state-of-the-art.
Resumo:
We investigate dynamics of public perceptions of the 2009 H1N1 influenza pandemic to understand changing patterns of sense-making and blame regarding the outbreak of emerging infectious diseases. We draw on social representation theory combined with a dramaturgical perspective to identify changes in how various collectives are depicted over the course of the pandemic, according to three roles: heroes, villains and victims. Quantitative results based on content analysis of three cross-sectional waves of interviews show a shift from mentions of distant collectives (e.g., far-flung countries) at Wave 1 to local collectives (e.g., risk groups) as the pandemic became of more immediate concern (Wave 2) and declined (Wave 3). Semi-automated content analysis of media coverage shows similar results. Thematic analyses of the discourse associated with collectives revealed that many were consistently perceived as heroes, villains and victims.
Resumo:
Computed Tomography (CT) represents the standard imaging modality for tumor volume delineation for radiotherapy treatment planning of retinoblastoma despite some inherent limitations. CT scan is very useful in providing information on physical density for dose calculation and morphological volumetric information but presents a low sensitivity in assessing the tumor viability. On the other hand, 3D ultrasound (US) allows a highly accurate definition of the tumor volume thanks to its high spatial resolution but it is not currently integrated in the treatment planning but used only for diagnosis and follow-up. Our ultimate goal is an automatic segmentation of gross tumor volume (GTV) in the 3D US, the segmentation of the organs at risk (OAR) in the CT and the registration of both modalities. In this paper, we present some preliminary results in this direction. We present 3D active contour-based segmentation of the eye ball and the lens in CT images; the presented approach incorporates the prior knowledge of the anatomy by using a 3D geometrical eye model. The automated segmentation results are validated by comparing with manual segmentations. Then, we present two approaches for the fusion of 3D CT and US images: (i) landmark-based transformation, and (ii) object-based transformation that makes use of eye ball contour information on CT and US images.
Resumo:
Pd1-xInx thin films (0.4 < x < 0.56) were prepared by radio frequency sputtering from a multi-zone target. The properties of these Hume-Rothery alloys were studied by X-ray diffractometry, electron probe microanalysis and scanning tunneling microscopy. The diffraction spectra were analyzed to obtain the intensity ratio of the (100) superlattice line to the (200) normal line, together with the variations of the lattice constant. The results ape explained quantitatively by a model based on point defects, i.e. Pd vacancies in In-rich films and Pd antisite atoms in Pd-rich films. In-rich films grow preferentially in the [100] direction while Pd-rich films grow preferentially in the [110] direction. The grains in indium-rich sputtered films appear to be enclosed in an atomically thick, indium-rich layer. The role of texture and the influence of point defects on electrical resistivity is also reported. (C) 1996 Elsevier Science Limited.
Resumo:
AIM: The use of an animal model to study the aqueous dynamic and the histological findings after deep sclerectomy with (DSCI) and without collagen implant. METHODS: Deep sclerectomy was performed on rabbits' eyes. Eyes were randomly assigned to receive collagen implants. Measurements of intraocular pressure (IOP) and aqueous outflow facility using the constant pressure method through cannulation of the anterior chamber were performed. The system was filled with BSS and cationised ferritin. Histological assessment of the operative site was performed. Sections were stained with haematoxylin and eosin and with Prussian blue. Aqueous drainage vessels were identified by the reaction between ferritin and Prussian blue. All eyes were coded so that the investigator was blind to the type of surgery until the evaluation was completed. RESULTS: A significant decrease in IOP (p<0.05) was observed during the first 6 weeks after DSCI (mean IOP was 13.07 (2.95) mm Hg preoperatively and 9.08 (2.25) mm Hg at 6 weeks); DS without collagen implant revealed a significant decrease in IOP at weeks 4 and 8 after surgery (mean IOP 12.57 (3.52) mm Hg preoperatively, 9.45 (3.38) mm Hg at 4 weeks, and 9.22 (3.39) mm Hg at 8 weeks). Outflow facility was significantly increased throughout the 9 months of follow up in both DSCI and DS groups (p<0.05). The preoperative outflow facility (OF) was 0.15 (0.02) micro l/min/mm Hg. At 9 months, OF was 0.52 (0.28) microl/min/mm Hg and 0.46 (0.07) micro l/min/mm Hg for DSCI and DS respectively. Light microscopy studies showed the appearance of new aqueous drainage vessels in the sclera adjacent to the dissection site in DSCI and DS and the apparition of spindle cells lining the collagen implant in DSCI after 2 months. CONCLUSION: A significant IOP decrease was observed during the first weeks after DSCI and DS. DS with or without collagen implant provided a significant increase in outflow facility throughout the 9 months of follow up. This might be partly explained by new drainage vessels in the sclera surrounding the operated site. Microscopic studies revealed the appearance of spindle cells lining the collagen implant in DSCI after 2 months.
Resumo:
El reconeixement dels gestos de la mà (HGR, Hand Gesture Recognition) és actualment un camp important de recerca degut a la varietat de situacions en les quals és necessari comunicar-se mitjançant signes, com pot ser la comunicació entre persones que utilitzen la llengua de signes i les que no. En aquest projecte es presenta un mètode de reconeixement de gestos de la mà a temps real utilitzant el sensor Kinect per Microsoft Xbox, implementat en un entorn Linux (Ubuntu) amb llenguatge de programació Python i utilitzant la llibreria de visió artifical OpenCV per a processar les dades sobre un ordinador portàtil convencional. Gràcies a la capacitat del sensor Kinect de capturar dades de profunditat d’una escena es poden determinar les posicions i trajectòries dels objectes en 3 dimensions, el que implica poder realitzar una anàlisi complerta a temps real d’una imatge o d’una seqüencia d’imatges. El procediment de reconeixement que es planteja es basa en la segmentació de la imatge per poder treballar únicament amb la mà, en la detecció dels contorns, per després obtenir l’envolupant convexa i els defectes convexos, que finalment han de servir per determinar el nombre de dits i concloure en la interpretació del gest; el resultat final és la transcripció del seu significat en una finestra que serveix d’interfície amb l’interlocutor. L’aplicació permet reconèixer els números del 0 al 5, ja que s’analitza únicament una mà, alguns gestos populars i algunes de les lletres de l’alfabet dactilològic de la llengua de signes catalana. El projecte és doncs, la porta d’entrada al camp del reconeixement de gestos i la base d’un futur sistema de reconeixement de la llengua de signes capaç de transcriure tant els signes dinàmics com l’alfabet dactilològic.
Resumo:
A new parameter is introduced: the lightning potential index (LPI), which is a measure of the potential for charge generation and separation that leads to lightning flashes in convective thunderstorms. The LPI is calculated within the charge separation region of clouds between 0 C and 20 C, where the noninductive mechanism involving collisions of ice and graupel particles in the presence of supercooled water is most effective. As shown in several case studies using the Weather Research and Forecasting (WRF) model with explicit microphysics, the LPI is highly correlated with observed lightning. It is suggested that the LPI may be a useful parameter for predicting lightning as well as a tool for improving weather forecasting of convective storms and heavy rainfall.
Resumo:
Segmenting ultrasound images is a challenging problemwhere standard unsupervised segmentation methods such asthe well-known Chan-Vese method fail. We propose in thispaper an efficient segmentation method for this class ofimages. Our proposed algorithm is based on asemi-supervised approach (user labels) and the use ofimage patches as data features. We also consider thePearson distance between patches, which has been shown tobe robust w.r.t speckle noise present in ultrasoundimages. Our results on phantom and clinical data show avery high similarity agreement with the ground truthprovided by a medical expert.