876 resultados para Dynamic Data eXchange


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dynamic neural networks (DNNs), which are also known as recurrent neural networks, are often used for nonlinear system identification. The main contribution of this letter is the introduction of an efficient parameterization of a class of DNNs. Having to adjust less parameters simplifies the training problem and leads to more parsimonious models. The parameterization is based on approximation theory dealing with the ability of a class of DNNs to approximate finite trajectories of nonautonomous systems. The use of the proposed parameterization is illustrated through a numerical example, using data from a nonlinear model of a magnetic levitation system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We have investigated the dynamic mechanical behavior of two cross-linked polymer networks with very different topologies: one made of backbones randomly linked along their length; the other with fixed-length strands uniformly cross-linked at their ends. The samples were analyzed using oscillatory shear, at very small strains corresponding to the linear regime. This was carried out at a range of frequencies, and at temperatures ranging from the glass plateau, through the glass transition, and well into the rubbery region. Through the glass transition, the data obeyed the time-temperature superposition principle, and could be analyzed using WLF treatment. At higher temperatures, in the rubbery region, the storage modulus was found to deviate from this, taking a value that is independent of frequency. This value increased linearly with temperature, as expected for the entropic rubber elasticity, but with a substantial negative offset inconsistent with straightforward enthalpic effects. Conversely, the loss modulus continued to follow time-temperature superposition, decreasing with increasing temperature, and showing a power-law dependence on frequency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper compares exchange rate pass-through to aggregate prices in the US, Germany and Japan across a number of dimensions. Building on the empirical approaches in the recent literature, our contribution is to perform a thorough sensitivity analysis of pass-through estimates. We find that the econometric method, data frequency and variable proxy employed matter for the precision of details, yet they often agree on some general trends. Thus, pass-through to import prices has declined in the 1990s relative to the 1980s, pass-through to export prices remains country-specific and pass-through to consumer prices is nowadays negligible in all three economies we considered.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We compared output from 3 dynamic process-based models (DMs: ECOSSE, MILLENNIA and the Durham Carbon Model) and 9 bioclimatic envelope models (BCEMs; including BBOG ensemble and PEATSTASH) ranging from simple threshold to semi-process-based models. Model simulations were run at 4 British peatland sites using historical climate data and climate projections under a medium (A1B) emissions scenario from the 11-RCM (regional climate model) ensemble underpinning UKCP09. The models showed that blanket peatlands are vulnerable to projected climate change; however, predictions varied between models as well as between sites. All BCEMs predicted a shift from presence to absence of a climate associated with blanket peat, where the sites with the lowest total annual precipitation were closest to the presence/absence threshold. DMs showed a more variable response. ECOSSE predicted a decline in net C sink and shift to net C source by the end of this century. The Durham Carbon Model predicted a smaller decline in the net C sink strength, but no shift to net C source. MILLENNIA predicted a slight overall increase in the net C sink. In contrast to the BCEM projections, the DMs predicted that the sites with coolest temperatures and greatest total annual precipitation showed the largest change in carbon sinks. In this model inter-comparison, the greatest variation in model output in response to climate change projections was not between the BCEMs and DMs but between the DMs themselves, because of different approaches to modelling soil organic matter pools and decomposition amongst other processes. The difference in the sign of the response has major implications for future climate feedbacks, climate policy and peatland management. Enhanced data collection, in particular monitoring peatland response to current change, would significantly improve model development and projections of future change.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The background error covariance matrix, B, is often used in variational data assimilation for numerical weather prediction as a static and hence poor approximation to the fully dynamic forecast error covariance matrix, Pf. In this paper the concept of an Ensemble Reduced Rank Kalman Filter (EnRRKF) is outlined. In the EnRRKF the forecast error statistics in a subspace defined by an ensemble of states forecast by the dynamic model are found. These statistics are merged in a formal way with the static statistics, which apply in the remainder of the space. The combined statistics may then be used in a variational data assimilation setting. It is hoped that the nonlinear error growth of small-scale weather systems will be accurately captured by the EnRRKF, to produce accurate analyses and ultimately improved forecasts of extreme events.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Many recent papers have documented periodicities in returns, return volatility, bid–ask spreads and trading volume, in both equity and foreign exchange markets. We propose and employ a new test for detecting subtle periodicities in time series data based on a signal coherence function. The technique is applied to a set of seven half-hourly exchange rate series. Overall, we find the signal coherence to be maximal at the 8-h and 12-h frequencies. Retaining only the most coherent frequencies for each series, we implement a trading rule that is based on these observed periodicities. Our results demonstrate in all cases except one that, in gross terms, the rules can generate returns that are considerably greater than those of a buy-and-hold strategy, although they cannot retain their profitability net of transactions costs. We conjecture that this methodology could constitute an important tool for financial market researchers which will enable them to detect, quantify and rank the various periodic components in financial data better.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In recent years, a sharp divergence of London Stock Exchange equity prices from dividends has been noted. In this paper, we examine whether this divergence can be explained by reference to the existence of a speculative bubble. Three different empirical methodologies are used: variance bounds tests, bubble specification tests, and cointegration tests based on both ex post and ex ante data. We find that, stock prices diverged significantly from their fundamental values during the late 1990's, and that this divergence has all the characteristics of a bubble.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

An algorithm for tracking multiple feature positions in a dynamic image sequence is presented. This is achieved using a combination of two trajectory-based methods, with the resulting hybrid algorithm exhibiting the advantages of both. An optimizing exchange algorithm is described which enables short feature paths to be tracked without prior knowledge of the motion being studied. The resulting partial trajectories are then used to initialize a fast predictor algorithm which is capable of rapidly tracking multiple feature paths. As this predictor algorithm becomes tuned to the feature positions being tracked, it is shown how the location of occluded or poorly detected features can be predicted. The results of applying this tracking algorithm to data obtained from real-world scenes are then presented.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The last few years have proved that Vertical Axis Wind Turbines (VAWTs) are more suitable for urban areas than Horizontal Axis Wind Turbines (HAWTs). To date, very little has been published in this area to assess good performance and lifetime of VAWTs either in open or urban areas. At low tip speed ratios (TSRs<5), VAWTs are subjected to a phenomenon called 'dynamic stall'. This can really affect the fatigue life of a VAWT if it is not well understood. The purpose of this paper is to investigate how CFD is able to simulate the dynamic stall for 2-D flow around VAWT blades. During the numerical simulations different turbulence models were used and compared with the data available on the subject. In this numerical analysis the Shear Stress Transport (SST) turbulence model seems to predict the dynamic stall better than the other turbulence models available. The limitations of the study are that the simulations are based on a 2-D case with constant wind and rotational speeds instead of considering a 3-D case with variable wind speeds. This approach was necessary for having a numerical analysis at low computational cost and time. Consequently, in the future it is strongly suggested to develop a more sophisticated model that is a more realistic simulation of a dynamic stall in a three-dimensional VAWT.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Implementations of incremental variational data assimilation require the iterative minimization of a series of linear least-squares cost functions. The accuracy and speed with which these linear minimization problems can be solved is determined by the condition number of the Hessian of the problem. In this study, we examine how different components of the assimilation system influence this condition number. Theoretical bounds on the condition number for a single parameter system are presented and used to predict how the condition number is affected by the observation distribution and accuracy and by the specified lengthscales in the background error covariance matrix. The theoretical results are verified in the Met Office variational data assimilation system, using both pseudo-observations and real data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper builds upon previous research on currency bands, and provides a model for the Colombian peso. Stochastic differential equations are combined with information related to the Colombian currency band to estimate competing models of the behaviour of the Colombian peso within the limits of the currency band. The resulting moments of the density function for the simulated returns describe adequately most of the characteristics of the sample returns data. The factor included to account for the intra-marginal intervention performed to drive the rate towards the Central Parity accounts only for 6.5% of the daily change, which supports the argument that intervention, if performed by the Central Bank, it is not directed to push the currency towards the limits. Moreover, the credibility of the Colombian Central Bank, Banco de la República’s ability to defend the band seems low.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Models play a vital role in supporting a range of activities in numerous domains. We rely on models to support the design, visualisation, analysis and representation of parts of the world around us, and as such significant research effort has been invested into numerous areas of modelling; including support for model semantics, dynamic states and behaviour, temporal data storage and visualisation. Whilst these efforts have increased our capabilities and allowed us to create increasingly powerful software-based models, the process of developing models, supporting tools and /or data structures remains difficult, expensive and error-prone. In this paper we define from literature the key factors in assessing a model’s quality and usefulness: semantic richness, support for dynamic states and object behaviour, temporal data storage and visualisation. We also identify a number of shortcomings in both existing modelling standards and model development processes and propose a unified generic process to guide users through the development of semantically rich, dynamic and temporal models.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes an experimental application of constrained predictive control and feedback linearisation based on dynamic neural networks. It also verifies experimentally a method for handling input constraints, which are transformed by the feedback linearisation mappings. A performance comparison with a PID controller is also provided. The experimental system consists of a laboratory based single link manipulator arm, which is controlled in real time using MATLAB/SIMULINK together with data acquisition equipment.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The aim of this paper is to explore effects of macroeconomic variables on house prices and also, the lead-lag relationships of real estate markets to examine house price diffusion across Asian financial centres. The analysis is based on the Global Vector Auto-Regression (GVAR) model estimated using quarterly data for six Asian financial centres (Hong Kong, Tokyo, Seoul, Singapore, Taipei and Bangkok) from 1991Q1 to 2011Q2. The empirical results indicate that the global economic conditions play significant roles in shaping house price movements across Asian financial centres. In particular, a small open economy that heavily relies on international trade such as – Singapore and Tokyo - shows positive correlations between economy’s openness and house prices, consistent with the Balassa-Samuelson hypothesis in international trade. However, region-specific conditions do play important roles as determinants of house prices, partly due to restrictive housing policies and demand-supply imbalances, as found in Singapore and Bangkok.