964 resultados para Drag (Aerodynamics)
Resumo:
We investigate the mechanisms involved in the breakdown of the viscous regime in riblets, with a view to determining the point of optimum performance, where drag reduction ceases to be proportional to the riblet size. This occurs empirically for a groove cross-section $A_g^+ \approx 120^+$. To study the interaction of the riblets with the overlaying turbulent flow, we systematically conduct DNSes in a ribbed turbulent channel with increasing riblet size. The conditionally averaged crossflow above and within the grooves reveals a mean recirculation bubble that exists up to the point of viscous breakdown, isolating the groove floor from the overlying crossflow, and preventing the high momentum fluid from entering the grooves. We do not find evidence of outside vortices lodging within the grooves until $A_g^+ \approx 400$, which is well past the drag minimum, and already into the drag increasing regime. Interestingly, as the bubble breaks down, we observe that quasi-two-dimensional spanwise structures form just above the riblets, similar to those observed above porous surfaces and plant canopies, which appear to be involved in the performance degradation.
Resumo:
The purpose of this thesis is to give answer to the question: why do riblets stop working for a certain size? Riblets are small surface grooves aligned in the mean direction of an overlying turbulent flow, designed specifically to reduce the friction between the flow and the surface. They were inspired by biological surfaces, like the oriented denticles in the skin of fastswimming sharks, and were the focus of a significant amount of research in the late eighties and nineties. Although it was found that the drag reduction depends on the riblet size scaled in wall units, the physical mechanisms implicated have not been completely understood up to now. It has been explained how riblets of vanishing size interact with the turbulent flow, producing a change in the drag proportional to their size, but that is not the regime of practical interest. The optimum performance is achieved for larger sizes, once that linear behavior has broken down, but before riblets begin adopting the character of regular roughness and increasing drag. This regime, which is the most relevant from a technological perspective, was precisely the less understood, so we have focused on it. Our efforts have followed three basic directions. First, we have re-assessed the available experimental data, seeking to identify common characteristics in the optimum regime across the different existing riblet geometries. This study has led to the proposal of a new length scale, the square root of the groove crosssection, to substitute the traditional peak-to-peak spacing. Scaling the riblet dimension with this length, the size of breakdown of the linear behavior becomes roughly universal. This suggests that the onset of the breakdown is related to a certain, fixed value of the cross-section of the groove. Second, we have conducted a set of direct numerical simulations of the turbulent flow over riblets, for sizes spanning the full drag reduction range. We have thus been able to reproduce the gradual transition between the different regimes. The spectral analysis of the flows has proven particularly fruitful, since it has made possible to identify spanwise rollers immediately above the riblets, which begin to appear when the riblet size is close to the optimum. This is a quite surprising feature of the flow, not because of the uniqueness of the phenomenon, which had been reported before for other types of complex and porous surfaces, but because most previous studies had focused on the detail of the flow above each riblet as a unit. Our novel approach has provided the adequate tools to capture coherent structures with an extended spanwise support, which interact with the riblets not individually, but collectively. We have also proven that those spanwise structures are responsible for the increase in drag past the viscous breakdown. Finally, we have analyzed the stability of the flow with a simplified model that connects the appearance of rollers to a Kelvin–Helmholtz-like instability, as is the case also for the flow over plant canopies and porous surfaces. In spite of the model emulating the presence of riblets only in an averaged, general fashion, it succeeds to capture the essential attributes of the breakdown, and provides a theoretical justification for the scaling with the groove cross-section.
Resumo:
The understanding of low Reynolds number aerodynamics is becoming increasingly prevalent with the recent surge in interest in advanced Micro-Air Vehicle (MAV) technology. Research in this area has been primarily stimulated by a military need for smaller, more versatile, autonomous, surveillance aircraft. The mechanism for providing the high lift coefficient required forMAV applications is thought to be largely influenced by the formation of a Leading Edge Vortex (LEV). This paper analyses experimentally, the influence of the LEV effect for a flat plate wing (AR = 4) under fast and slow pitch-up motions at Re =10,000 using a combination of dye flow visualisation and PIV measurements. It is found that a fast pitch over 1c shows a flow topology dominant LEV, while for a slow pitch case over 6c, the flow is largely separated. The development of the suction surface flow and the LEV was strongly correlated with the kinematics of the leading edge, suggesting that the effective local angle of incidence at the Leading Edge (LE) is of considerable significance in unsteady pitching motions. © 2013 by P.R.R.J Stevens.
Resumo:
This paper introduces a new version of the multiobjective Alliance Algorithm (MOAA) applied to the optimization of the NACA 0012 airfoil section, for minimization of drag and maximization of lift coefficients, based on eight section shape parameters. Two software packages are used: XFoil which evaluates each new candidate airfoil section in terms of its aerodynamic efficiency, and a Free-Form Deformation tool to manage the section geometry modifications. Two versions of the problem are formulated with different design variable bounds. The performance of this approach is compared, using two indicators and a statistical test, with that obtained using NSGA-II and multi-objective Tabu Search (MOTS) to guide the optimization. The results show that the MOAA outperforms MOTS and obtains comparable results with NSGA-II on the first problem, while in the other case NSGA-II is not able to find feasible solutions and the MOAA is able to outperform MOTS. © 2013 IEEE.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - o realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 AIAA.
Resumo:
Aerodynamic shape optimisation is being increasingly utilised as a design tool in the aerospace industry. In order to provide accurate results, design optimisation methods rely on the accuracy of the underlying CFD methods applied to obtain aerodynamic forces for a given configuration. Previous studies of the authors have highlighted that the variation of the order of accuracy of the CFD solver with a fixed turbulence model affects the resulting optimised airfoil shape for a single element airfoil. The accuracy of the underlying CFD model is even more relevant in the context of high-lift configurations where an accurate prediction of flow is challenging due to the complex flow physics involving transition and flow separation phenomena. This paper explores the effect of the fidelity of CFD results for a range of turbulence models within the context of the computational design of aircraft configurations. The NLR7301 multi-element airfoil (main wing and flap) is selected as the baseline configuration, because of the wealth of experimental an computational results available for this configuration. An initial validation study is conducted in order to establish optimal mesh parameters. A bi-objective shape optimisation problem is then formulated, by trying to reveal the trade-off between lift and drag coefficients at high angles of attack. Optimisation of the airfoil shape is performed with Spalart-Allmaras, k - ω SST and k - ε realisable models. The results indicate that there is consistent and complementary impact to the optimum level achieved from all the three different turbulence models considered in the presented case study. Without identifying particular superiority of any of the turbu- lence models, we can say though that each of them expressed favourable influence towards different optimality routes. These observations lead to the exploration of new avenues for future research. © 2012 by the authors.
Resumo:
Genetic algorithms (GAs) have been used to tackle non-linear multi-objective optimization (MOO) problems successfully, but their success is governed by key parameters which have been shown to be sensitive to the nature of the particular problem, incorporating concerns such as the numbers of objectives and variables, and the size and topology of the search space, making it hard to determine the best settings in advance. This work describes a real-encoded multi-objective optimizing GA (MOGA) that uses self-adaptive mutation and crossover, and which is applied to optimization of an airfoil, for minimization of drag and maximization of lift coefficients. The MOGA is integrated with a Free-Form Deformation tool to manage the section geometry, and XFoil which evaluates each airfoil in terms of its aerodynamic efficiency. The performance is compared with those of the heuristic MOO algorithms, the Multi-Objective Tabu Search (MOTS) and NSGA-II, showing that this GA achieves better convergence.
Resumo:
This paper is concerned with the difficulties in model testing deepwater structures at reasonable scales. An overview of recent research efforts to tackle this challenge is given first, introducing the concept of line truncation. Passive truncation has traditionally been the preferred method by industry; however, these techniques tend to suffer in capturing accurately line dynamic response and so reproducing peak tensions. In an attempt to improve credibility of model test data the proposed truncation procedure sets up the truncated model, based on line dynamic response rather than quasi-static system stiffness. Vibration decay of transverse elastic waves due to fluid drag forces is assessed and it is found that below a certain length criterion, the transverse vibrational characteristics for each line are inertia driven, hence with respect to these motions the truncated model can assume a linear damper whose coefficient depends on the local line properties and vibration frequency. Initially a simplified taut string model is assumed for which the line is submerged in still water, one end fixed at the bottom the other assumed to follow the vessel response, which can be harmonic or random. A dimensional analysis, supported by exact benchmark numerical solutions, has shown that it is possible to produce a general guideline for the truncation length criterion, which is suitable for any kind of line with any top motion. The focus of this paper is to extend this work to a more complex line configuration of a conventional deepwater mooring line and so enhance the generality of the truncation guideline. The paper will close with an example case study of a spread mooring system, applying this method to create an equivalent numerical model at a reduced depth that replicates exactly the static and dynamic characteristics of the full depth system. Copyright © 2012 by ASME.
Resumo:
A small strain two-dimensional discrete dislocation plasticity framework coupled to vacancy diffusion is developed wherein the motion of edge dislocations is by a combination of glide and climb. The dislocations are modelled as line defects in a linear elastic medium and the mechanical boundary value problem is solved by the superposition of the infinite medium elastic fields of the dislocations and a complimentary non-singular solution that enforces the boundary conditions. Similarly, the climbing dislocations are modelled as line sources/sinks of vacancies and the vacancy diffusion boundary value problem is also solved by a superposition of the fields of the line sources/sinks in an infinite medium and a complementary non-singular solution that enforces the boundary conditions. The vacancy concentration field along with the stress field provides the climb rate of the dislocations. Other short-range interactions of the dislocations are incorporated via a set of constitutive rules. We first employ this formulation to investigate the climb of a single edge dislocation in an infinite medium and illustrate the existence of diffusion-limited and sink-limited climb regimes. Next, results are presented for the pure bending and uniaxial tension of single crystals oriented for single slip. These calculations show that plasticity size effects are reduced when dislocation climb is permitted. Finally, we contrast predictions of this coupled framework with an ad hoc model in which dislocation climb is modelled by a drag-type relation based on a quasi steady-state solution. © 2013 Elsevier Ltd. All rights reserved.
Resumo:
Critical swimming speeds (U-crit) and morphological characters were compared between the F-4 generation of GH-transgenic common carp Cyprinus carpio and the non-transgenic controls. Transgenic fish displayed a mean absolute U-crit value 22.3% lower than the controls. Principal component analysis identified variations in body shape, with transgenic fish having significantly deeper head, longer caudal length of the dorsal region, longer standard length (L-S) and shallower body and caudal region, and shorter caudal length of the ventral region. Swimming speeds were related to the combination of deeper body and caudal region, longer caudal length of the ventral region, shallower head depth, shorter caudal length of dorsal region and L-S. These findings suggest that morphological variations which are poorly suited to produce maximum thrust and minimum drag in GH-transgenic C. carpio may be responsible for their lower swimming abilities in comparison with non-transgenic controls.
Resumo:
In the first part of the paper steady two-phase flow predictions have been performed for the last stage of a model steam turbine to examine the influence of drag between condensed fog droplets and the continuous vapour phase. In general, droplets due to homogeneous condensation are small and thus kinematic relaxation provides only a minor contribution to the wetness losses. Different droplet size distributions have been investigated to estimate at which size inter-phase friction becomes more important. The second part of the paper deals with the deposition of fog droplets on stator blades. Results from several references are repeated to introduce the two main deposition mechanisms which are inertia and turbulent diffusion. Extensive postprocessing routines have been programmed to calculate droplet deposition due to these effects for a last stage stator blade in three-dimensions. In principle the method to determine droplet deposition by turbulent diffusion equates to that of Yau and Young [1] and the advantages and disadvantages of this relatively simple method are discussed. The investigation includes the influence of different droplet sizes on droplet deposition rates and shows that for small fog droplets turbulent diffusion is the main deposition mechanism. If the droplets size is increased inertial effects become more and more important and for droplets around 1 μm inertial deposition dominates. Assuming realistic droplet sizes the overall deposition equates to about 1% to 3% of the incoming wetness for the investigated guide vane at normal operating conditions. Copyright © 2013 by Solar Turbines Incorporated.
Resumo:
The complex three-dimensional two-phase flow in a low pressure steam turbine is investigated with comprehensive numerical flow simulations. In addition to the condensation process, which already takes place in the last stages of steam turbines, the numerical flow model is enhanced to consider the drag forces between the droplets and the vapour phase. The present paper shows the differences in the flow path of the phases and investigates the effect of an increasing droplet diameter. For the flow simulations a performance cluster is used because of the high effort for such multi-momentum two-phase flow calculations. In steam turbines the deposition of small water droplets on the stator blades or on parts of the casing is responsible for the formation of large coarse water droplets and these may cause additional dissipation as well as damage due to blade erosion. A method is presented that uses detailed CFD data to predict droplet deposition on turbine stator blades. This simulation method to detect regions of droplet deposition can help to improve the design of water removal devices. © Springer-Verlag Berlin Heidelberg 2013.
Resumo:
Most of the current understanding of tip leakage flows has been derived from detailed cascade experiments. However, the cascade model is inherently approximate since it is difficult to simulate the boundary conditions present in a real machine, particularly the secondary flows convecting from the upstream stator row and the relative motion of the casing and blade. This problem is further complicated when considering the high pressure turbine rotors of aero engines, where the high Mach numbers must also be matched in order to correctly model the aerodynamics and heat transfer. More realistic tests can be performed on high-speed turbines, but the experimental fidelity and resolution achievable in such set-ups is limited. In order to examine the differences between cascade models and real-engine behavior, the influence of boundary conditions on the tip leakage flow in an unshrouded high pressure turbine rotor is investigated using RANS calculations. This study examines the influence of the rotor inlet condition and relative casing motion. A baseline calculation with a simplified inlet condition and no relative endwall motion exhibits similar behavior to cascade studies. Only minor changes to the leakage flow are induced by introducing either a more realistic inlet condition or relative casing motion. However when both of these conditions are applied simultaneously the pattern of leakage flow is very different, with ingestion of flow over much of the early suction surface. The paper explores the physical processes driving this change and the impact on leakage losses and modeling requirements. Copyright © 2013 by ASME.
Resumo:
This paper looks at active control of the normal shock wave/turbulent boundary layer interaction (SBLI) using smart flap actuators. The actuators are manufactured by bonding piezoelectric material to an inert substrate to control the bleed/suction rate through a plenum chamber. The cavity provides communication of signals across the shock, allowing rapid thickening of the boundary layer approaching the shock, which splits into a series of weaker shocks forming a lambda shock foot, reducing wave drag. Active control allows optimum control of the interaction, as it would be capable of positioning the control region around the original shock position and control the rate of mass transfer. © 2004 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.
Resumo:
The effect of streamwise slots on the interaction of a normal shock wave / turbulent boundary layer has been investigated experimentally at a Mach number of 1.3. The surface pressure distribution for the controlled interaction was found to be significantly smeared, featuring a distinct plateau. This was due to a change in shock structure from a typical unseparated normal shock wave boundary layer interaction to a large bifurcated Lambda type shock pattern. Boundary layer velocity measurements downstream of the slots revealed a strong spanwise variation of boundary layer properties whereas the modified shock structure was relatively twodimensional. Oil flow visualisation indicated that in the presence of slots the boundary layer surface flow was highly three dimensional and confirmed that the effect of slots was mainly due to suction and blowing similar to that for passive control with uniform surface ventilation. Three hole probe measurements confirmed that the boundary layer was three dimensional and that the slots introduced vortical motion into the flowfield. Results indicate that when applied to an aerofoil, the control device has the potential to reduce wave drag while incurring only small viscous penalties. The introduction of streamwise vorticity may also be beneficial to delay trailing edge separation and the device is thought to be capable of postponing buffet onset. © 2001 by A N Smith.