602 resultados para Disulfide Connectivities
Resumo:
Chaperonins prevent the aggregation of partially folded or misfolded forms of a protein and, thus, keep it competent for productive folding. It was suggested that GroEL, the chaperonin of Escherichia coli, exerts this function 1 unfolding such intermediates, presumably in a catalytic fashion. We investigated the kinetic mechanism of GroEL-induced protein unfolding by using a reduced and carbamidomethylated variant of RNase T1, RCAM-T1, as a substrate. RCAM-T1 cannot fold to completion, because the two disulfide bonds are missing, and it is, thus, a good model for long-lived folding intermediates. RCAM-T1 unfolds when GroEL is added, but GroEL does not change the microscopic rate constant of unfolding, ruling out that it catalyzes unfolding. GroEL unfolds RCAM-T1 because it binds with high affinity to the unfolded form of the protein and thereby shifts the overall equilibrium toward the unfolded state. GroEL can unfold a partially folded or misfolded intermediate by this thermodynamic coupling mechanism when the Gibbs free energy of the binding to GroEL is larger than the conformational stability of the intermediate and when the rate of its unfolding is high.
Resumo:
Overexpression of the Neu/ErbB-2 receptor tyrosine kinase has been implicated in the genesis of human breast cancer. Indeed, expression of either activated or wild-type neu in the mammary epithelium of transgenic mice results in the induction of mammary tumors. Previously, we have shown that many of the mammary tumors arising in transgenic mice expressing wild-type neu occur through somatic activating mutations within the neu transgene itself. Here we demonstrate that these mutations promote dimerization of the Neu receptor through the formation of disulfide bonds, resulting in its constitutive activation. To explore the role of conserved cysteine residues within the region deleted in these altered Neu proteins, we examined the transforming potential of a series of Neu receptors in which the individual cysteine residues were mutated. These analyses indicated that mutation of certain cysteine residues resulted in the oncogenic activation of Neu. The increased transforming activity displayed by the altered receptors correlated with constitutive dimerization that occurred in a disulfide bond-dependent manner. We further demonstrate that addition of 2-mercaptoethanol to the culture medium interfered with the specific transforming activity of the mutant Neu receptors. These observations suggest that oncogenic activation of Neu results from constitutive disulfide bond-dependent dimerization.
Resumo:
We present new methods for identifying and analyzing statistically significant residue clusters that occur in three-dimensional (3D) protein structures. Residue clusters of different kinds occur in many contexts. They often feature the active site (e.g., in substrate binding), the interface between polypeptide units of protein complexes, regions of protein-protein and protein-nucleic acid interactions, or regions of metal ion coordination. The methods are illustrated with 3D clusters centering on four themes. (i) Acidic or histidine-acidic clusters associated with metal ions. (ii) Cysteine clusters including coordination of metals such as zinc or iron-sulfur structures, cysteine knots prominent in growth factors, multiple sets of buried disulfide pairings that putatively nucleate the hydrophobic core, or cysteine clusters of mostly exposed disulfide bridges. (iii) Iron-sulfur proteins and charge clusters. (iv) 3D environments of multiple histidine residues. Study of diverse 3D residue clusters offers a new perspective on protein structure and function. The algorithms can aid in rapid identification of distinctive sites, suggest correlations among protein structures, and serve as a tool in the analysis of new structures.
Resumo:
To determine whether alternative cytotoxic T lymphocyte-associated protein 4 (CTLA4) binding proteins exist on B cells, we constructed (i) mCTLA4hIgG consisting of the extracellular region of a mouse CTLA4 molecule and the Fc portion of a human IgG1 molecule and (ii) PYAAhIgG, a mutant mCTLA4hIgG, having two amino acid substitutions on the conserved MYPPPY motif in the complementarity-determining region 3-like region and lacking detectable binding to both B7-1 and B7-2 molecules. Using these fusion proteins (mCTLA4hIgG and PYAAhIgG), we demonstrated that a mouse immature B-cell line, WEHI231 cells, expressed alternative CTLA4 binding molecules (ACBMs) that were distinct from both B7-1 and B7-2. ACBMs were 130-kDa disulfide-linked proteins. More importantly, ACBMs were able to provide costimulatory signal for T-cell proliferation in the presence of anti-CD3 monoclonal antibodies. In addition, we demonstrated that more than 20% of B220+ cells obtained from normal mouse spleen expressed ACBMs.
Resumo:
Crouzon syndrome is an autosomal dominant condition primarily characterized by craniosynostosis. This syndrome has been associated with a variety of amino acid point mutations in the extracellular domain of fibroblast growth factor receptor 2 (FGFR2). FGFR2/Neu chimeras were generated by substituting the extracellular domain of Neu with that of FGFR2 containing the following Crouzon mutations: Tyr-340-->His; Cys-342-->Tyr; Cys-342-->Arg; Cys-342-->Ser; Ser-354-->Cys: and delta17 (deletion of amino acids 345-361). Each of the mutant chimeric FGFR2/Neu constructs stimulated focus formation in NIH 3T3 cells, indicating that Crouzon mutations can stimulate signal transduction through a heterologous receptor tyrosine kinase. In vitro kinase assay results indicate that FGFR2 receptors containing Crouzon mutations have increased tyrosine kinase activity and, when analyzed under nonreducing conditions, exhibited disulfide-bonded dimers. Thus the human developmental abnormality Crouzon syndrome arises from constitutive activation of FGFR2 due to aberrant intermolecular disulfide-bonding. These results together with our earlier observation that achondroplasia results from constitutive activation of the related receptor FGFR3, leads to the prediction that other malformation syndromes attributed to FGFRs, such as Pfeiffer syndrome and Thanatophoric dysplasia, also arise from constitutive receptor activation.
Resumo:
A chromosomal locus required for copper resistance and competitive fitness was cloned from a strain of Pseudomonas fluorescens isolated from copper-contaminated agricultural soil. Sequence analysis of this locus revealed six open reading frames with homology to genes involved in cytochrome c biogenesis in other bacteria, helC, cycJ, cycK, tipB, cycL, and cycH, with the closest similarity being to the aeg-46.5(yej) region of the Escherichia coli chromosome. The proposed functions of these genes in other bacteria include the binding, transport, and coupling of heme to apocytochrome c in the periplasm of these Gram-negative bacteria. Putative heme-binding motifs were present in the predicted products of cycK and cycL, and TipB contained a putative disulfide oxidoreductase active site proposed to maintain the heme-binding site of the apocytochrome in a reduced state for ligation of heme. Tn3-gus mutagenesis showed that expression of the genes was constitutive but enhanced by copper, and confirmed that the genes function both in copper resistance and production of active cytochrome c. However, two mutants in cycH were copper-sensitive and oxidase-positive, suggesting that the functions of these genes, rather than cytochrome c oxidase itself, were required for resistance to copper.
Resumo:
The pores of voltage-gated ion channels are lined by protein loops that determine selectivity and conductance. The relative orientations of these "P" loops remain uncertain, as do the distances between them. Using site-directed mutagenesis, we introduced pairs of cysteines into the P loops of micro1 rat skeletal muscle sodium channels and sought functional evidence of proximity between the substituted residues. Only cysteinyl residues that are in close proximity can form disulfide bonds or metal-chelating sites. The mutant Y401C (domain I) spontaneously formed a disulfide bond when paired with E758C in the P loop of domain II; the same residue, when coupled with G1530C in domain IV, created a high-affinity binding site for Cd2+ ions. The results provide the first specific constraints for intramolecular dimensions of the sodium channel pore.
Resumo:
A group of resident ER proteins have been identified that are proposed to function as molecular chaperones. The best characterized of these is BiP/GRP78, an hsp70 homologue that binds peptides containing hydrophobic residues in vitro and unfolded or unassembled proteins in vivo. However, evidence that mammalian BiP plays a direct role in protein folding remains circumstantial. In this study, we examine how BiP interacts with a particular substrate, immunoglobulin light chain (lambda LC), during its folding. Wild-type hamster BiP and several well-characterized BiP ATPase mutants were used in transient expression experiments. We demonstrate that wild-type lambda LCs showed prolonged association with mutant BiP which inhibited their secretion. Both wild-type and mutant BiP bound only to unfolded and partially folded LCs. The wild-type BiP was released from the incompletely folded LCs, allowing them to fold and be secreted, whereas the mutant BiP was not released. As a result, the LCs that were bound to BiP mutants were unable to undergo complete disulfide bond formation and were retained in the ER. Our experiments suggest that LCs undergo both BiP-dependent and BiP-independent folding steps, demonstrating that both ATP binding and hydrolysis activities of BiP are essential for the completion of LC folding in vivo and reveal that BiP must release before disulfide bond formation can occur in that domain.
Resumo:
L125R is a mutation in the transmembrane helix C of rhodopsin that is associated with autosomal dominant retinitis pigmentosa. To probe the orientation of the helix and its packing in the transmembrane domain, we have prepared and studied the mutations E122R, I123R, A124R, S127R, L125F, and L125A at, and in proximity to, the above mutation site. Like L125R, the opsin expressed in COS-1 cells from E122R did not bind 11-cis-retinal, whereas those from I123R and S127R formed the rhodopsin chromophore partially. A124R opsin formed the rhodopsin chromophore (lambda max 495 nm) in the dark, but the metarhodopsin II formed on illumination decayed about 6.5 times faster than that of the wild type and was defective in transducin activation. The mutant opsins from L125F and L125A bound 11-cis-retinal only partially, and in both cases, the mixtures of the proteins produced were separated into retinal-binding and non-retinal-binding (misfolded) fractions. The purified mutant rhodopsin from L125F showed lambda max at 500 nm, whereas that from L125A showed lambda max at 503 nm. The mutant rhodopsin L125F showed abnormal bleaching behavior and both mutants on illumination showed destabilized metarhodopsin II species and reduced transducin activation. Because previous results have indicated that misfolding in rhodopsin is due to the formation of a disulfide bond other than the normal disulfide bond between Cys-110 and Cys-187 in the intradiscal domain, we conclude from the misfolding in mutants L125F and L125A that the folding in vivo in the transmembrane domain is coupled to that in the intradiscal domain.
Resumo:
Recent biochemical and crystallographic results suggest that a type II DNA topoisomerase acts as an ATP-modulated clamp with two sets of jaws at opposite ends: a DNA-bound enzyme can admit a second DNA through one set of jaws; upon binding ATP, this DNA is passed through an enzyme-mediated opening in the first DNA and expelled from the enzyme through the other set of jaws. Experiments based on the introduction of reversible disulfide links across one dimer interface of yeast DNA topoisomerase II have confirmed this mechanism. The second DNA is found to enter the enzyme through the gate formed by the N-terminal parts of the enzyme and leave it through the gate close to the C termini.
Resumo:
Carbonic anhydrase isozyme III (CAIII) is unique among the carbonic anhydrases because it demonstrates phosphatase activity. CAIII forms a disulfide link between glutathione and two of its five cysteine residues, a process termed S-glutathiolation. Glutathiolation of CAIII occurs in vivo and is increased during aging and under acute oxidative stress. We show that glutathiolation serves to reversibly regulate the phosphatase activity of CAIII. Glutathiolation of Cys-186 is required for phosphatase activity, while glutathiolation of Cys-181 blocks activity. Phosphotyrosine is the preferred substrate, although phosphoserine and phosphothreonine can also be cleaved. Thus, glutathiolation is a reversible covalent modification that can regulate CAIII, a phosphatase that may function in the cellular response to oxidative stress.
Resumo:
We describe a protease, named "thiocalsin," that is activated by calcium but only after reductive activation by thioredoxin, a small protein with a redox-active disulfide group that functions widely in regulation. Thiocalsin appeared to be a 14-kDa serine protease that functions independently of calmodulin. The enzyme, purified from germinating wheat grain, specifically cleaved the major indigenous storage proteins, gliadins and glutenins, after they too had been reduced, preferentially by thioredoxin. The disulfide groups of the enzyme, as well as its protein substrates, were reduced by thioredoxin via NADPH and the associated enzyme, NADP-thioredoxin reductase. The results broaden the roles of thioredoxin and calcium and suggest a joint function in activating thiocalsin, thereby providing amino acids for germination and seedling development.
Resumo:
A number of alternatively spliced epsilon transcripts have been detected in IgE-producing B cells, in addition to the mRNAs encoding the classical membrane and secreted IgE heavy (H) chains. In a recent study, we examined the protein products of three of these alternatively spliced isoforms and found that they are intracellularly retained and degraded because of their inability to assemble into complete IgE molecules. We have now similarly examined a more recently described epsilon mRNA species that is generated by splicing between a donor splice site immediately upstream of the stop codon in the H-chain constant region exon 4 (CH4) and an acceptor site located in the 3' part of the second membrane exon. We show that this isoform is efficiently secreted by both plasma cells and B lymphocytes and therefore represents a second secreted IgE isoform (epsilon S2). The epsilon S2 H chain is only six amino acids longer than the classical secreted Ig H chain (epsilon S1) and contains a C-terminal cysteine, which is a characteristic sequence feature of mu and alpha H chains. However, unlike IgM and IgA, the epsilon S2 C-terminal cysteine (Cys-554) does not induce polymerization of H2L2 molecules (where L is light chain), but rather creates a disulfide bond between the two H chains that increases the rate of association into covalently bound H2L2 monomers. This C-terminal cysteine also does not function as an intracellular retention element because the epsilon S2 isoform was secreted in amounts equal to that of the epsilon S1, both in B lymphocytes and in plasma cells. The epsilon S2 H chains secreted by B lymphocytes differed from the epsilon S1 H chains in the extent of glycosylation. Interestingly, a difference in glycosylation between B-lymphocytes and plasma cells was also noted for both isoforms. The presence of the Cys-554 also allowed the identification of a distinctive asymmetric pathway of IgE assembly, common to both types of epsilon H chains.
Resumo:
The same heterozygous T -> C transition at nt 8567 of the von Willebrand factor (vWF) transcript was found in two unrelated patients with type III) von Willebrand disease, with no other apparent abnormality. In one family, both alleles were normal in the parents and one sister; thus, the mutation originated de novo in the proposita. The second patient also had asymptomatic parents who, however, were not available for study. The structural consequences of the identified mutation, resulting in the CyS2010 -> Arg substitution, were evaluated by expression of the vWF carboxyl-terminal domain containing residues 1366-2050. Insect cells infected with recombinant baculovirus expressing normal vWF sequence secreted a disulfide linked dimeric molecule with an apparent molecular mass of 150 kDa before reduction, yielding a single band of 80 kDa after disulfide bond reduction. In contrast, cells expressing the mutant fragment secreted a monomeric molecule of apparent molecular mass of 80 kDa, which remained unchanged after reduction. We conclude that CyS2010 is essential for normal dimerization of vWF subunits through disulfide bonding of carboxyl-terminal domains and that a heterozygous mutation in the corresponding codon is responsible for defective multimer formation in type III) von Willebrand disease.
Resumo:
A covalently cross-linked dimer of yeast DNA topoisomerase II was created by fusing the enzyme with the GCN4 leucine zipper followed by two glycines and a cysteine. Upon oxidation of the chimeric protein, a disulfide bond forms between the two carboxyl termini, covalently and intradimerically cross-linking the two protomers. In addition, all nine of the cysteines naturally occurring in topoisomerase II have been changed to alanines in this construct. This cross-linked, cysteine-less topoisomerase II is catalytically active in DNA duplex passage as indicated by ATP-dependent DNA supercoil relaxation and kinetoplast DNA decatenation assays. However, these experiments do not directly distinguish between a "one-gate" and a "two-gate" mechanism for the enzyme.