998 resultados para Distribution of quadratic units
Resumo:
We investigate the lifetime distribution functions of spontaneous emission from line antennas embedded in finite-size two-dimensional 12-fold quasi-periodic photonic crystals. Our calculations indicate that two-dimensional quasi-periodic crystals lead to the coexistence of both accelerated and inhibited decay processes. The decay behaviors of line antennas are drastically changed as the locations of the antennas are varied from the center to the edge in quasi-periodic photonic crystals and the location of transition frequency is varied.
Resumo:
GaSb and InSb epilayers grown on GaAs (001) vicinal substrates misoriented toward (111) plane were studied using high resolution x-ray diffraction. The results show that GaSb and InSb epilayers take on positive crystallographic tilt, and the asymmetric distribution of 60 degrees misfit dislocations in {111} glide planes have an effect on the tilt. In addition, the vicinal substrate influences the distribution of the threading dislocations in {111} glide planes, and the density of dislocation in the (111) plane is higher than in the ((1) over bar(1) over bar1) plane. A model was proposed to interpret the distribution of full width at half maximum, which can help us understand the formation and glide process of the dislocations. (C) 2009 American Institute of Physics. [DOI 10.1063/1.3115450]
Resumo:
The depth distribution of the strain-related tetragonal distortion e(T) in the GaN epilayer with low-temperature AlN interlayer (LT-AlN IL) on Si(111) substrate is investigated by Rutherford backscattering and channeling. The samples with the LT-AlN IL of 8 and 16 nm thickness are studied, which are also compared with the sample without the LT-AlN IL. For the sample with 16-nm-thick LT-AlN IL, it is found that there exists a step-down of e(T) of about 0.1% in the strain distribution. Meanwhile, the angular scan around the normal GaN <0001> axis shows a tilt difference about 0.01degrees between the two parts of GaN separated by the LT-AlN IL, which means that these two GaN layers are partially decoupled by the AlN interlayer. However, for the sample with 8-nm-thick LT-AlN IL, neither step-down of e(T) nor the decoupling phenomenon is found. The 0.01degrees decoupled angle in the sample with 16-nm-thick LT-AlN IL confirms the relaxation of the LT-AlN IL. Thus the step-down of e(T) should result from the compressive strain compensation brought by the relaxed AlN interlayer. It is concluded that the strain compensation effect will occur only when the thickness of the LT-AlN IL is beyond a critical thickness. (C) 2004 American Institute of Physics.
Resumo:
The authors calculate the lifetime distribution functions of spontaneous emission from infinite line antennas embedded in two-dimensional disordered photonic crystals with finite size. The calculations indicate the coexistence of both accelerated and inhibited decay processes in disordered photonic crystals with finite size. The decay behavior of the spontaneous emission from infinite line antennas changes significantly by varying factors such as the line antennas' positions in the disordered photonic crystal, the shape of the crystal, the filling fraction, and the dielectric constant. Moreover, the authors analyze the effect of the degree of disorder on spontaneous emission. (c) 2007 American Institute of Physics.
Resumo:
The deep level luminescence of crack-free Al0.25Ga0.75N layers grown on a GaN template with a high-temperature grown AlN interlayer has been studied using spatially resolved cathodoluminescence (CL) spectroscopy. The CL spectra of Al0.25Ga0.75N grown on a thin AlN interlayer present a deep level aquamarine luminescence (DLAL) band at about 2.6 eV and a deep level violet luminescence (DLVL) band at about 3.17 eV. Cross-section line scan CL measurements on a cleaved sample edge clearly reveal different distributions of DLAL-related and DLVL-related defects in AlGaN along the growth direction. The DLAL band of AlGaN is attributed to evolve from the yellow luminescence band of GaN, and therefore has an analogous origin of a radiative transition between a shallow donor and a deep acceptor. The DLVL band is correlated with defects distributed near the GaN/AlN/AlGaN interfaces. Additionally, the lateral distribution of the intensity of the DLAL band shows a domainlike feature which is accompanied by a lateral phase separation of Al composition. Such a distribution of deep level defects is probably caused by the strain field within the domains. (c) 2006 American Institute of Physics.
Resumo:
A systematic investigation is made on the influence of the longitudinal and transverse period distributions of quantum dots on the elastic strain field. The results showed that the effects of the longitudinal period and transverse period on the strain field are just opposite along the direction of center-axis of the quantum dots, and under proper conditions, both effects can be eliminated. The results demonstrate that in calculating the effect of the strain field on the electronic structure, one must take into account the quantum dots period distribution, and it is inadequate to use the isolated quantum dot model in simulating the strain field.
Resumo:
InAs quantum dots (QDs) were grown on In0.15Ga0.85As strained layers by molecular beam epitaxy on GaAs (0 0 1) substrates. Atomic force microscopy and transmission electron microscopy study have indicated that In0.15Ga0.85As ridges and InAs QDs formed at the inclined upside of interface misfit dislocations (MDs). By testifying the MDs are mixed 60 degrees dislocations and calculating the surface stress over them when they are 12-180 nm below the surface, we found the QDs prefer nucleating on the side with tensile stress of the MDs and this explained why the ordering of QDs is weak when the InGaAs layer is relatively thick. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on Stefan-Boltzman and Lambert theorems, the radiation energy distribution on substrate (REDS) from catalyzer with parallel filament geometry has been simulated by variation of filament and system layout in hot-wire chemical vapor deposition. The REDS uniformity is sensitive to the distance between filament and substrate d(f-s) when d(f-s) less than or equal to 4 cm. As d(f-s) > 4 cm, the REDS uniformity is independent of d(f-s) and is mainly determined by filament number and filament separation. Two-dimensional calculation shows that the REDS uniformity is limited by temperature decay at filament edges. The simulation data are in good agreement with experiments. (C) 2003 Elsevier Science B.V. All rights reserved.
Resumo:
Evolution of the height distribution of Ge islands during in situ annealing of Ge films on Si(1 0 0) has been studied. Island height is found to have a bimodal distribution. The standard deviation of the island height divided by the mean island height, for the mode of larger island size is more than that for the other mode. We suggest that the presence of Ehrlich-Schwoebel barriers, combined with the misfit strain, can lead to the bimodal distribution of island size, the mode of larger island size having narrower base size distribution, but wider height distribution for Ge islands on Si(1 0 0). The bimodal distribution of island size could be stable due to kinetics without necessarily regarding it as minimum-energy configuration. (C) 1999 Elsevier Science B.V. All rights reserved.
Effects of shock waves on spatial distribution of proton beams in ultrashort laser-foil interactions
Resumo:
The characteristics of proton beam generated in the interaction of an ultrashort laser pulse with a large prepulse with solid foils are experimentally investigated. It is found that the proton beam emitted from the rear surface is not well collimated, and a "ring-like" structure with some "burst-like" angular modulation is presented in the spatial distribution. The divergence of the proton beam reduces significantly when the laser intensity is decreased. The "burst-like" modulation gradually fades out for the thicker target. It is believed that the large divergence angle and the modulated ring structure are caused by the shock wave induced by the large laser prepulse. A one-dimensional hydrodynamic code, MED103, is used to simulate the behavior of the shock wave produced by the prepulse. The simulation indicates that the rear surface of the foil target is significantly modified by the shock wave, consequently resulting in the experimental observations. (c) 2006 American Institute of Physics.