887 resultados para Distribution network reconfiguration problem
Resumo:
A Bayesian optimization algorithm for the nurse scheduling problem is presented, which involves choosing a suitable scheduling rule from a set for each nurse’s assignment. Unlike our previous work that used GAs to implement implicit learning, the learning in the proposed algorithm is explicit, i.e. eventually, we will be able to identify and mix building blocks directly. The Bayesian optimization algorithm is applied to implement such explicit learning by building a Bayesian network of the joint distribution of solutions. The conditional probability of each variable in the network is computed according to an initial set of promising solutions. Subsequently, each new instance for each variable is generated by using the corresponding conditional probabilities, until all variables have been generated, i.e. in our case, a new rule string has been obtained. Another set of rule strings will be generated in this way, some of which will replace previous strings based on fitness selection. If stopping conditions are not met, the conditional probabilities for all nodes in the Bayesian network are updated again using the current set of promising rule strings. Computational results from 52 real data instances demonstrate the success of this approach. It is also suggested that the learning mechanism in the proposed approach might be suitable for other scheduling problems.
Resumo:
Context. Determination of the ages of central stars of planetary nebulae (CSPN) is a complex problem, and there is presently no single method that can be generally applied. We have developed several methods of estimating the ages of CSPN, based on both the observed nebular properties and some properties of the stars themselves. Aims. Our aim is to estimate the ages and the age distribution of CSPN and to compare the derived results with mass and age determinations of CSPN and white dwarfs based on empirical determinations of these quantities. Methods. We considered a sample of planetary nebulae in the galactic disk, most of which (similar to 69%) are located in the solar neighbourhood, within 3 kpc from the Sun. We discuss several methods of deriving the age distribution of CSPN, namely; (i) the use of an age-metallicity relation that also depends on the galactocentric distance; (ii) the use of an age-metallicity relation obtained for the galactic disk; and (iii) the determination of ages from the central star masses obtained from the observed nitrogen abundances. Results. We estimated the age distribution of CSPN with average uncertainties of 1-2 Gyr, and compared our results with the expected distribution based both on the observed mass distribution of white dwarfs and on the age distribution derived from available mass distributions of CSPN. Based on our derived age distributions, we conclude that most CSPN in the galactic disk have ages under 6 Gyr, and that the age distribution is peaked around 2-4 Gyr.
Resumo:
Aims. An analytical solution for the discrepancy between observed core-like profiles and predicted cusp profiles in dark matter halos is studied. Methods. We calculate the distribution function for Navarro-Frenk-White halos and extract energy from the distribution, taking into account the effects of baryonic physics processes. Results. We show with a simple argument that we can reproduce the evolution of a cusp to a flat density profile by a decrease of the initial potential energy.
Resumo:
Background: Envenoming by viper snakes constitutes an important public health problem in Brazil and other developing countries. Local hemorrhage is an important symptom of these accidents and is correlated with the action of snake venom metalloproteinases (SVMPs). The degradation of vascular basement membrane has been proposed as a key event for the capillary vessel disruption. However, SVMPs that present similar catalytic activity towards extracellular matrix proteins differ in their hemorrhagic activity, suggesting that other mechanisms might be contributing to the accumulation of SVMPs at the snakebite area allowing capillary disruption. Methodology/Principal Findings: In this work, we compared the tissue distribution and degradation of extracellular matrix proteins induced by jararhagin (highly hemorrhagic SVMP) and BnP1 (weakly hemorrhagic SVMP) using the mouse skin as experimental model. Jararhagin induced strong hemorrhage accompanied by hydrolysis of collagen fibers in the hypodermis and a marked degradation of type IV collagen at the vascular basement membrane. In contrast, BnP1 induced only a mild hemorrhage and did not disrupt collagen fibers or type IV collagen. Injection of Alexa488-labeled jararhagin revealed fluorescent staining around capillary vessels and co-localization with basement membrane type IV collagen. The same distribution pattern was detected with jararhagin-C (disintegrin-like/cysteine-rich domains of jararhagin). In opposition, BnP1 did not accumulate in the tissues. Conclusions/Significance: These results show a particular tissue distribution of hemorrhagic toxins accumulating at the basement membrane. This probably occurs through binding to collagens, which are drastically hydrolyzed at the sites of hemorrhagic lesions. Toxin accumulation near blood vessels explains enhanced catalysis of basement membrane components, resulting in the strong hemorrhagic activity of SVMPs. This is a novel mechanism that underlies the difference between hemorrhagic and non-hemorrhagic SVMPs, improving the understanding of snakebite pathology.
Resumo:
A network can be analyzed at different topological scales, ranging from single nodes to motifs, communities, up to the complete structure. We propose a novel approach which extends from single nodes to the whole network level by considering non-overlapping subgraphs (i.e. connected components) and their interrelationships and distribution through the network. Though such subgraphs can be completely general, our methodology focuses on the cases in which the nodes of these subgraphs share some special feature, such as being critical for the proper operation of the network. The methodology of subgraph characterization involves two main aspects: (i) the generation of histograms of subgraph sizes and distances between subgraphs and (ii) a merging algorithm, developed to assess the relevance of nodes outside subgraphs by progressively merging subgraphs until the whole network is covered. The latter procedure complements the histograms by taking into account the nodes lying between subgraphs, as well as the relevance of these nodes to the overall subgraph interconnectivity. Experiments were carried out using four types of network models and five instances of real-world networks, in order to illustrate how subgraph characterization can help complementing complex network-based studies.
Resumo:
The main purpose of this paper is to present architecture of automated system that allows monitoring and tracking in real time (online) the possible occurrence of faults and electromagnetic transients observed in primary power distribution networks. Through the interconnection of this automated system to the utility operation center, it will be possible to provide an efficient tool that will assist in decisionmaking by the Operation Center. In short, the desired purpose aims to have all tools necessary to identify, almost instantaneously, the occurrence of faults and transient disturbances in the primary power distribution system, as well as to determine its respective origin and probable location. The compilations of results from the application of this automated system show that the developed techniques provide accurate results, identifying and locating several occurrences of faults observed in the distribution system.
Resumo:
This paper develops H(infinity) control designs based on neural networks for fully actuated and underactuated cooperative manipulators. The neural networks proposed in this paper only adapt the uncertain dynamics of the robot manipulators. They work as a complement of the nominal model. The H(infinity) performance index includes the position errors as well the squeeze force errors between the manipulator end-effectors and the object, which represents a complete disturbance rejection scenario. For the underactuated case, the squeeze force control problem is more difficult to solve due to the loss of some degrees of manipulator actuation. Results obtained from an actual cooperative manipulator, which is able to work as a fully actuated and an underactuated manipulator, are presented. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
This paper addresses the time-variant reliability analysis of structures with random resistance or random system parameters. It deals with the problem of a random load process crossing a random barrier level. The implications of approximating the arrival rate of the first overload by an ensemble-crossing rate are studied. The error involved in this so-called ""ensemble-crossing rate"" approximation is described in terms of load process and barrier distribution parameters, and in terms of the number of load cycles. Existing results are reviewed, and significant improvements involving load process bandwidth, mean-crossing frequency and time are presented. The paper shows that the ensemble-crossing rate approximation can be accurate enough for problems where load process variance is large in comparison to barrier variance, but especially when the number of load cycles is small. This includes important practical applications like random vibration due to impact loadings and earthquake loading. Two application examples are presented, one involving earthquake loading and one involving a frame structure subject to wind and snow loadings. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
Power distribution automation and control are import-ant tools in the current restructured electricity markets. Unfortunately, due to its stochastic nature, distribution systems faults are hardly avoidable. This paper proposes a novel fault diagnosis scheme for power distribution systems, composed by three different processes: fault detection and classification, fault location, and fault section determination. The fault detection and classification technique is wavelet based. The fault-location technique is impedance based and uses local voltage and current fundamental phasors. The fault section determination method is artificial neural network based and uses the local current and voltage signals to estimate the faulted section. The proposed hybrid scheme was validated through Alternate Transient Program/Electromagentic Transients Program simulations and was implemented as embedded software. It is currently used as a fault diagnosis tool in a Southern Brazilian power distribution company.
Resumo:
In this study, further improvements regarding the fault location problem for power distribution systems are presented. The proposed improvements relate to the capacitive effect consideration on impedance-based fault location methods, by considering an exact line segment model for the distribution line. The proposed developments, which consist of a new formulation for the fault location problem and a new algorithm that considers the line shunt admittance matrix, are presented. The proposed equations are developed for any fault type and result in one single equation for all ground fault types, and another equation for line-to-line faults. Results obtained with the proposed improvements are presented. Also, in order to compare the improvements performance and demonstrate how the line shunt admittance affects the state-of-the-art impedance-based fault location methodologies for distribution systems, the results obtained with two other existing methods are presented. Comparative results show that, in overhead distribution systems with laterals and intermediate loads, the line shunt admittance can significantly affect the state-of-the-art methodologies response, whereas in this case the proposed developments present great improvements by considering this effect.
Resumo:
This paper describes the development of an optimization model for the management and operation of a large-scale, multireservoir water supply distribution system with preemptive priorities. The model considers multiobjectives and hedging rules. During periods of drought, when water supply is insufficient to meet the planned demand, appropriate rationing factors are applied to reduce water supply. In this paper, a water distribution system is formulated as a network and solved by the GAMS modeling system for mathematical programming and optimization. A user-friendly interface is developed to facilitate the manipulation of data and to generate graphs and tables for decision makers. The optimization model and its interface form a decision support system (DSS), which can be used to configure a water distribution system to facilitate capacity expansion and reliability studies. Several examples are presented to demonstrate the utility and versatility of the developed DSS under different supply and demand scenarios, including applications to one of the largest water supply systems in the world, the Sao Paulo Metropolitan Area Water Supply Distribution System in Brazil.
Distributed Estimation Over an Adaptive Incremental Network Based on the Affine Projection Algorithm
Resumo:
We study the problem of distributed estimation based on the affine projection algorithm (APA), which is developed from Newton`s method for minimizing a cost function. The proposed solution is formulated to ameliorate the limited convergence properties of least-mean-square (LMS) type distributed adaptive filters with colored inputs. The analysis of transient and steady-state performances at each individual node within the network is developed by using a weighted spatial-temporal energy conservation relation and confirmed by computer simulations. The simulation results also verify that the proposed algorithm provides not only a faster convergence rate but also an improved steady-state performance as compared to an LMS-based scheme. In addition, the new approach attains an acceptable misadjustment performance with lower computational and memory cost, provided the number of regressor vectors and filter length parameters are appropriately chosen, as compared to a distributed recursive-least-squares (RLS) based method.
Resumo:
Clock signal distribution in telecommunication commercial systems usually adopts a master-slave architecture, with a precise time basis generator as a master and phase-locked loops (PLLs) as slaves. In the majority of the networks, second-order PLLs are adopted due to their simplicity and stability. Nevertheless, in some applications better transient responses are necessary and, consequently, greater order PLLs need to be used, in spite of the possibility of bifurcations and chaotic attractors. Here a master-slave network with third-order PLLs is analyzed and conditions for the stability of the synchronous state are derived, providing design constraints for the node parameters, in order to guarantee stability and reachability of the synchronous state for the whole network. Numerical simulations are carried out in order to confirm the analytical results. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Second-order phase locked loops (PLLs) are devices that are able to provide synchronization between the nodes in a network even under severe quality restrictions in the signal propagation. Consequently, they are widely used in telecommunication and control. Conventional master-slave (M-S) clock-distribution systems are being, replaced by mutually connected (MC) ones due to their good potential to be used in new types of application such as wireless sensor networks, distributed computation and communication systems. Here, by using an analytical reasoning, a nonlinear algebraic system of equations is proposed to establish the existence conditions for the synchronous state in an MC PLL network. Numerical experiments confirm the analytical results and provide ideas about how the network parameters affect the reachability of the synchronous state. The phase-difference oscillation amplitudes are related to the node parameters helping to design PLL neural networks. Furthermore, estimation of the acquisition time depending on the node parameters allows the performance evaluation of time distribution systems and neural networks based on phase-locked techniques. (c) 2008 Elsevier GmbH. All rights reserved.
Resumo:
The distribution of clock signals throughout the nodes of a network is essential for several applications. in control and communication with the phase-locked loop (PLL) being the component for electronic synchronization process. In systems with master-slave (MS) strategies, the PLLs are the slave nodes responsible for providing reliable clocks in all nodes of the network. As PLLs have nonlinear phase detection, double-frequency terms appear and filtering becomes necessary. Imperfections in filtering process cause oscillations around the synchronous state worsening the performance of the clock distribution process. The behavior of one-way master-slave (OWMS) clock distribution networks is studied and performances of first- and second-order filter processes are compared, concerning lock-in ranges and responses to perturbations of the synchronous state. (c) 2007 Elsevier GmbH. All rights reserved.