921 resultados para Direct solar radiation pressure torque
Resumo:
This study intends to establish a relation between environmental degradation, particularly the devastation of the green canopy, and public health. Utilizing a mapping of the trees included in the researched area, each individual tree was analyzed according to its age, taxonomic listing, architecture, shape and size (determined by aesthetic/convenience reasons or deformed by pruning). Initially investigated were the covert reasons lying underneath the constant aggression against trees (which many times seem to contain elements of hatred and contempt) within the urban environment. In addition to that, the aspects concerning environmental modifications and the consequent impact on public health were also assessed. Two main problems promptly emerged as a result of the removal of trees: a) without a canopy to protect the areas, they became subject to winds directly blown from SW Africa and impregnated with aerosol partic les, which are common causes for respiratory disorders and, b) direct UV solar radiation, which causes some types of skin cancers and eye disorders. To reach such results, we studied the origins and formation of UV radiation induced cancers and searched for the UV radiation spectra of action, e.g., usual intensity and quantity reaching clear and shadowed spaces in a certain area and its consequences. In a second instance, we also searched for pertinent data resources in order to confirm the increase of skin cancer cases due to exposure to UV radiation and the relation between the destruction of the green canopy and the above mentioned problems. We believe that a few significant results have been achieved by this study, namely: the relation between a culture based on medieval beliefs and its consequences on the environment; how this culture exploits and deforms nature in pursuit of financial and psychological interests to a point of transforming the landscape into a copy of something devoid of any relation to latitude and altitude; and above all, the indifference concerning the alarming results carried by these modifications
Resumo:
This study evaluates the influence of depth and environmental parameters on the development of Gracilaria birdiae Plastino & Oliveira (Gracilariaceae Rhodophyta) in an organic shrimp pound (Litopenaeus vannamei) under euthrophical conditions. PVC structures (module) witch four ropes laden with 150 g of macroalgae each, were kept during 35 days at three different depths (surface, 10 and 20 cm depth). Wet biomass weighing and environmental parameters (temperature, salinity, turbidity, pH, transparence, precipitation, evaporation, insolation, accumulated solar radiation, nitrite, nitrate, ammonium and orthophosphate) were measured weekly. At all three proposed depths, the macroalgae displayed a higher biomass at the end of experiment than at the initial inoculations. The module kept at a 10 cm depth presented the greatest average biomass (186,3), followed by that kept at 20 cm (180,4 g) and the surface module (169,9 g). Biomass variations showed algae to suffer the direct effects of depths. Biomass loss was associated with the factors that influence light penetration, such as sediment deposits above the thallus, rate of evaporation and precipitation. The smallest loses occurred in the algae kept on surface (0,16%), followed by the algae kept at 20 cm (0,20%) and 10 cm (0,22%). The specific growth rate (SGR) of G. birdiae showed no significant difference between the three depths nor the sample periods. Nevertheless, the modules kept at 10 and 20 cm depths presented similar growth evolution, both growing 0,38%·per day-1, while the module kept on surface had an average SGR of 0,36%·day-1. The models related to growth rate demonstrated temperature, salinity, pH, orthophosphate, ammonium, precipitation and turbidity as the principal environmental parameters influencing the development of G. birdiae
Resumo:
Ultraviolet-A radiation (UV-A: 315–400 nm) is a component of solar radiation that exerts a wide range of physiological responses in plants. Currently, field attenuation experiments are the most reliable source of information on the effects of UV-A. Common plant responses to UV-A include both inhibitory and stimulatory effects on biomass accumulation and morphology. UV-A effects on biomass accumulation can differ from those on root: shoot ratio, and distinct responses are described for different leaf tissues. Inhibitory and enhancing effects of UV-A on photosynthesis are also analysed, as well as activation of photoprotective responses, including UV-absorbing pigments. UV-A-induced leaf flavonoids are highly compound-specific and species-dependent. Many of the effects on growth and development exerted by UV-A are distinct to those triggered by UV-B and vary considerably in terms of the direction the response takes. Such differences may reflect diverse UV-perception mechanisms with multiple photoreceptors operating in the UV-A range and/or variations in the experimental approaches used. This review highlights a role that various photoreceptors (UVR8, phototropins, phytochromes and cryptochromes) may play in plant responses to UV-A when dose, wavelength and other conditions are taken into account.
Resumo:
Stirling engines with parabolic dish for thermal to electric conversion of solar energy is one of the most promising solutions of renewable energy technologies in order to reduce the dependency from fossil fuels in electricity generation. This paper addresses the modelling and simulation of a solar powered Stirling engine system with parabolic dish and electric generator aiming to determine its energy production and efficiency. The model includes the solar radiation concentration system, the heat transfer in the ther- mal receiver, the thermal cycle and the mechanical and electric energy conversion. The thermodynamic and energy transfer processes in the engine are modelled in detail, including all the main processes occur- ring in the compression, expansion and regenerator spaces. Starting from a particular configuration, an optimization of the concentration factor is also carried out and the results for both the transient and steady state regimes are presented. It was found that using a directly illuminated thermal receiver with- out cavity the engine efficiency is close to 23.8% corresponding to a global efficiency of 10.4%. The com- ponents to be optimized are identified in order to increase the global efficiency of the system and the trade-off between system complexity and efficiency is discussed.
Resumo:
Este trabalho introduz a teoria da instrumentação virtual descrevendo os principais componentes desta. É detalhada a implementação de um instrumento virtual e uma base de dados associada que permitem obter uma estimativa de variáveis ambientais para qualquer ponto do globo e qualquer altura do ano. Este instrumento - Environment simulator – permite fornecer dados ambientais necessários a simulação da radiação solar. Para explicar a implementação da plataforma de apoio introduzem-se noções relativas à radiação solar, à relação entre o planeta Terra e o sol. É considerada a radiação solar espectral bem como os principais componentes óticos atmosféricos que com ela interagem. Apresentam-se formulações e aproximações dos coeficientes de extinção e dispersão na atmosfera que levam ao cálculo da radiação solar espectral direta, difusa e global. Por fim, validam-se os resultados através da comparação com valores registados durante a campanha de observações ALEX2014.
Resumo:
Solar radiation data is crucial for the design of energy systems based on the solar resource. Since diffuse radiation measurements are not always available in the archive data series, either due to the inexistence of measuring equipment, shading device misplacement or missing data, models to generate these data are needed. In this work, one year of hourly and daily horizontal solar global and diffuse irradiation measurements in Évora are used to establish a new relation between the diffuse radiation and the clearness index. The proposed model includes a fitting parameter, which was adjusted through a simple optimization procedure to minimize the Least Square Error as compared to measurements. A comparison against several other fitting models presented in the literature was also carried out using the Root Mean Square Error as statistical indicator, and it was found that the present model is more accurate than the previous fitting models for the diffuse radiation data in Évora.
Cloud parameter retrievals from Meteosat and their effects on the shortwave radiation at the surface
Resumo:
A method based on Spinning Enhanced Visible and Infrared Imager (SEVIRI) measured reflectance at 0.6 and 3.9 µm is used to retrieve the cloud optical thickness (COT) and cloud effective radius (re) over the Iberian Peninsula. A sensitivity analysis of simulated retrievals to the input parameters demonstrates that the cloud top height is an important factor in satellite retrievals of COT and re with uncertainties around 10% for small values of COT and re; for water clouds these uncertainties can be greater than 10% for small values of re. The uncertainties found related with geometries are around 3%. The COT and re are assessed using well-known satellite cloud products, showing that the method used characterize the cloud field with more than 80% (82%) of the absolute differences between COT (re) mean values of all clouds (water plus ice clouds) centred in the range from ±10 (±10 µm), with absolute bias lower than 2 (2 μm) for COT (re) and root mean square error values lower than 10 (8 μm) for COT (re). The cloud water path (CWP), derived from satellite retrievals, and the shortwave cloud radiative effect at the surface (CRESW) are related for high fractional sky covers (Fsc >0.8), showing that water clouds produce more negative CRESW than ice clouds. The COT retrieved was also related to the cloud modification factor, which exhibits reductions and enhancements of the surface SW radiation of the order of 80% and 30%, respectively, for COT values lower than 10. A selected case study shows, using a ground-based sky camera that some situations classified by the satellite with high Fsc values correspond to situations of broken clouds where the enhancements actually occur. For this case study, a closure between the liquid water path (LWP) obtained from the satellite retrievals and the same cloud quantity obtained from ground-based microwave measurements was performed showing a good agreement between both LWP data set values.
Resumo:
Lo que se pretende con este trabajo es probar el método de Swartman y Ogunlade (1966), en las aéreas geográficas de Limón, Buenos Aires, Fabio Baudrit (Alajuela), Nicoya y Puntarenas, donde existen datos de brillo solar, humedad relativa y radiación solar global diaria media mensual. Se prueba la validez de este método para estas estaciones en estudio, con un valor aceptable de ± 10% de error en la mayoría de los casos. En ausencia de aparatos que miden directamente la radiación solar global, se recomienda utilizar este método, pues únicamente requiere datos de humedad relativa y brillo solar, que se miden directamente en casi todas las estaciones meteorológicas del país. SUMMARY This article attempts to verify the method used by Swartman and Ogunlade (1966) in the areas of Limón, Buenos Aires, Fabio Baudrit (Alajuela), Nicoya and Puntarenas, where data exist concerning solar brilliance, relative humidity and daily global solar radiation based on monthly averages. The validity of this method is proved in reference to the above mentioned study sites, with an acceptable error factor of ± 10% in the majority of the cases. The usage of this method is recommended in the absence of apparatus that measure directly the global solar radiation, because you only need data concerning relative humidity and solar brilliance; data that is directly collected in all of the meteorogical stations located in Costa Rica. RESUME Le but de ce travail est la probation de la méthode de Swartman et Ogunlade (1966), en l’appliquant dans des aires géographiques tant diverses comme Limón, Buenos Aires, Fabio Baudrit (Alajuela), Nicoya et Puntarenas ; c'est-à-dire là où existe des mesures de la durée de l’ensoleillement, de l’humidité relative et de la moyenne mensuelle de la radiation solaire globale quotidienne. Le test de cette méthode, para ces stations donne une erreur relative de 10% dans la plupart de cas. Quand on manque d’appareils pour la mesure de la radiation solaire globale, on recommande l’usage de cette méthode, puisqu’elle se base Our les registres d’humidité relative et d’heures d’ensoleillement mesurées que toutes les stations météoritiques du pays.
Resumo:
Values of ultraviolet global solar radiation were measured with an ultraviolet radiometer and also predicted with an atmospheric spectral model. The values obtained with the atmospheric spectral model, which is physically based, were analyzed and compared with the experimental values measured in situ. The measurements were performed for different zenith angles under clear skies conditions in Heredia, Costa Rica. The necessary input data include latitude, altitude, surface albedo, Earth-Sun distance, as well as atmospheric characteristics: atmospheric turbidity, precipitable water and atmospheric ozone. The comparisons between the measured and predicted values gave satisfactory results.
Resumo:
The dynamic interaction between building systems and external climate is extremely complex, involving a large number of difficult-to-predict variables. In order to study the impact of global warming on the built environment, the use of building simulation techniques together with forecast weather data are often necessary. Since all building simulation programs require hourly meteorological input data for their thermal comfort and energy evaluation, the provision of suitable weather data becomes critical. Based on a review of the existing weather data generation models, this paper presents an effective method to generate approximate future hourly weather data suitable for the study of the impact of global warming. Depending on the level of information available for the prediction of future weather condition, it is shown that either the method of retaining to current level, constant offset method or diurnal modelling method may be used to generate the future hourly variation of an individual weather parameter. An example of the application of this method to the different global warming scenarios in Australia is presented. Since there is no reliable projection of possible change in air humidity, solar radiation or wind characters, as a first approximation, these parameters have been assumed to remain at the current level. A sensitivity test of their impact on the building energy performance shows that there is generally a good linear relationship between building cooling load and the changes of weather variables of solar radiation, relative humidity or wind speed.
Resumo:
This research discusses some of the issues encountered while developing a set of WGEN parameters for Chile and advice for others interested in developing WGEN parameters for arid climates. The WGEN program is a commonly used and a valuable research tool; however, it has specific limitations in arid climates that need careful consideration. These limitations are analysed in the context of generating a set of WGEN parameters for Chile. Fourteen to 26 years of precipitation data are used to calculate precipitation parameters for 18 locations in Chile, and 3–8 years of temperature and solar radiation data are analysed to generate parameters for seven of these locations. Results indicate that weather generation parameters in arid regions are sensitive to erroneous or missing precipitation data. Research shows that the WGEN-estimated gamma distribution shape parameter (α) for daily precipitation in arid zones will tend to cluster around discrete values of 0 or 1, masking the high sensitivity of these parameters to additional data. Rather than focus on the length in years when assessing the adequacy of a data record for estimation of precipitation parameters, researchers should focus on the number of wet days in dry months in a data set. Analysis of the WGEN routines for the estimation of temperature and solar radiation parameters indicates that errors can occur when individual ‘months’ have fewer than two wet days in the data set. Recommendations are provided to improve methods for estimation of WGEN parameters in arid climates.
Resumo:
Solar ultraviolet (UV) radiation causes a range of skin disorders as well as affecting vision and the immune system. It also inhibits development of plants and animals. UV radiation monitoring is used routinely in some locations in order to alert the population to harmful solar radiation levels. There is ongoing research to develop UV-selective-sensors [1–3]. A personal, inexpensive and simple UV-selective-sensor would be desirable to measure UV intensity exposure. A prototype of such a detector has been developed and evaluated in our laboratory. It comprises a sealed two-electrode photoelectrochemical cell (PEC) based on nanocrystalline TiO2. This abundant semiconducting oxide, which is innocuous and very sta-ble, is the subject of intense study at present due to its application in dye sensitized solar cells (DSSC) [4]. Since TiO2 has a wide band gap (EG = 3.0 eV for rutile and EG = 3.2 eV for anatase), it is inher-ently UV-selective, so that UV filters are not required. This further reduces the cost of the proposed photodetector in comparison with conventional silicon detectors. The PEC is a semiconductor–electrolyte device that generates a photovoltage when it is illuminated and a corresponding photocur-rent if the external circuit is closed. The device does not require external bias, and the short circuit current is generally a linear function of illumination intensity. This greatly simplifies the elec-trical circuit needed when using the PEC as a photodetector. DSSC technology, which is based on a PEC containing nanocrystalline TiO2 sensitized with a ruthenium dye, holds out the promise of solar cells that are significantly cheaper than traditional silicon solar cells. The UV-sensor proposed in this paper relies on the cre-ation of electron–hole pairs in the TiO2 by UV radiation, so that it would be even cheaper than a DSSC since no sensitizer dye is needed. Although TiO2 has been reported as a suitable material for UV sensing [3], to the best of our knowledge, the PEC configuration described in the present paper is a new approach. In the present study, a novel double-layer TiO2 structure has been investigated. Fabrication is based on a simple and inexpensive technique for nanostructured TiO2 deposition using microwave-activated chemical bath deposition (MW-CBD) that has been reported recently [5]. The highly transparent TiO2 (anatase) films obtained are densely packed, and they adhere very well to the transparent oxide (TCO) substrate [6]. These compact layers have been studied as contacting layers in double-layer TiO2 structures for DSSC since improvement of electron extraction at the TiO2–TCO interface is expected [7]. Here we compare devices incorporating a single mesoporous nanocrystalline TiO2 structure with devices based on a double structure in which a MW-CBD film is situated between the TCO and the mesoporous nanocrystalline TiO2 layer. Besides improving electron extraction, this film could also help to block recombination of electrons transferred to the TCO with oxidized species in the electrolyte, as has been reported in the case of DSSC for compact TiO2 films obtained by other deposition tech-niques [8,9]. The two types of UV-selective sensors were characterized in detail. The current voltage characteristics, spectral response, inten-sity dependence of short circuit current and response times were measured and analyzed in order to evaluate the potential of sealed mesoporous TiO2-based photoelectrochemical cells (PEC) as low cost personal UV-photodetectors.