923 resultados para Direct method
Resumo:
Over the years the Differential Quadrature (DQ) method has distinguished because of its high accuracy, straightforward implementation and general ap- plication to a variety of problems. There has been an increase in this topic by several researchers who experienced significant development in the last years. DQ is essentially a generalization of the popular Gaussian Quadrature (GQ) used for numerical integration functions. GQ approximates a finite in- tegral as a weighted sum of integrand values at selected points in a problem domain whereas DQ approximate the derivatives of a smooth function at a point as a weighted sum of function values at selected nodes. A direct appli- cation of this elegant methodology is to solve ordinary and partial differential equations. Furthermore in recent years the DQ formulation has been gener- alized in the weighting coefficients computations to let the approach to be more flexible and accurate. As a result it has been indicated as Generalized Differential Quadrature (GDQ) method. However the applicability of GDQ in its original form is still limited. It has been proven to fail for problems with strong material discontinuities as well as problems involving singularities and irregularities. On the other hand the very well-known Finite Element (FE) method could overcome these issues because it subdivides the computational domain into a certain number of elements in which the solution is calculated. Recently, some researchers have been studying a numerical technique which could use the advantages of the GDQ method and the advantages of FE method. This methodology has got different names among each research group, it will be indicated here as Generalized Differential Quadrature Finite Element Method (GDQFEM).
Resumo:
The evaluation of chronic activity of the hypothalamic-pituitary-adrenal (HPA) axis is critical for determining the impact of chronic stressful situations. The potential use of hair glucocorticoids as a non-invasive, retrospective, biomarker of long term HPA activity is of great interest, and it is gaining acceptance in humans and animals. However, there are still no studies in literature examining hair cortisol concentration in pigs and corticosterone concentration in laboratory rodents. Therefore, we developed and validated, for the first time, a method for measuring hair glucocorticoids concentration in commercial sows and in Sprague-Dawley rats. Our preliminary data demonstrated: 1) a validated and specific washing protocol and extraction assay method with a good sensitivity in both species; 2) the effect of the reproductive phase, housing conditions and seasonality on hair cortisol concentration in sows; 3) similar hair corticosterone concentration in male and female rats; 4) elevated hair corticosterone concentration in response to chronic stress manipulations and chronic ACTH administration, demonstrating that hair provides a good direct index of HPA activity over long periods than other indirect parameters, such adrenal or thymus weight. From these results we believe that this new non-invasive tool needs to be applied to better characterize the overall impact in livestock animals and in laboratory rodents of chronic stressful situations that negatively affect animals welfare. Nevertheless, further studies are needed to improve this methodology and maybe to develop animal models for chronic stress of high interest and translational value in human medicine.
Resumo:
Cytochrom c Oxidase (CcO), der Komplex IV der Atmungskette, ist eine der Häm-Kupfer enthaltenden Oxidasen und hat eine wichtige Funktion im Zellmetabolismus. Das Enzym enthält vier prosthetische Gruppen und befindet sich in der inneren Membran von Mitochondrien und in der Zellmembran einiger aerober Bakterien. Die CcO katalysiert den Elektronentransfer (ET) von Cytochrom c zu O2, wobei die eigentliche Reaktion am binuklearen Zentrum (CuB-Häm a3) erfolgt. Bei der Reduktion von O2 zu zwei H2O werden vier Protonen verbraucht. Zudem werden vier Protonen über die Membran transportiert, wodurch eine elektrochemische Potentialdifferenz dieser Ionen zwischen Matrix und Intermembranphase entsteht. Trotz ihrer Wichtigkeit sind Membranproteine wie die CcO noch wenig untersucht, weshalb auch der Mechanismus der Atmungskette noch nicht vollständig aufgeklärt ist. Das Ziel dieser Arbeit ist, einen Beitrag zum Verständnis der Funktion der CcO zu leisten. Hierzu wurde die CcO aus Rhodobacter sphaeroides über einen His-Anker, der am C-Terminus der Untereinheit II angebracht wurde, an eine funktionalisierte Metallelektrode in definierter Orientierung gebunden. Der erste Elektronenakzeptor, das CuA, liegt dabei am nächsten zur Metalloberfläche. Dann wurde eine Doppelschicht aus Lipiden insitu zwischen die gebundenen Proteine eingefügt, was zur sog. proteingebundenen Lipid-Doppelschicht Membran (ptBLM) führt. Dabei musste die optimale Oberflächenkonzentration der gebundenen Proteine herausgefunden werden. Elektrochemische Impedanzspektroskopie(EIS), Oberflächenplasmonenresonanzspektroskopie (SPR) und zyklische Voltammetrie (CV) wurden angewandt um die Aktivität der CcO als Funktion der Packungsdichte zu charakterisieren. Der Hauptteil der Arbeit betrifft die Untersuchung des direkten ET zur CcO unter anaeroben Bedingungen. Die Kombination aus zeitaufgelöster oberflächenverstärkter Infrarot-Absorptionsspektroskopie (tr-SEIRAS) und Elektrochemie hat sich dafür als besonders geeignet erwiesen. In einer ersten Studie wurde der ET mit Hilfe von fast scan CV untersucht, wobei CVs von nicht-aktivierter sowie aktivierter CcO mit verschiedenen Vorschubgeschwindigkeiten gemessen wurden. Die aktivierte Form wurde nach dem katalytischen Umsatz des Proteins in Anwesenheit von O2 erhalten. Ein vier-ET-modell wurde entwickelt um die CVs zu analysieren. Die Methode erlaubt zwischen dem Mechanismus des sequentiellen und des unabhängigen ET zu den vier Zentren CuA, Häm a, Häm a3 und CuB zu unterscheiden. Zudem lassen sich die Standardredoxpotentiale und die kinetischen Koeffizienten des ET bestimmen. In einer zweiten Studie wurde tr-SEIRAS im step scan Modus angewandt. Dafür wurden Rechteckpulse an die CcO angelegt und SEIRAS im ART-Modus verwendet um Spektren bei definierten Zeitscheiben aufzunehmen. Aus diesen Spektren wurden einzelne Banden isoliert, die Veränderungen von Vibrationsmoden der Aminosäuren und Peptidgruppen in Abhängigkeit des Redoxzustands der Zentren zeigen. Aufgrund von Zuordnungen aus der Literatur, die durch potentiometrische Titration der CcO ermittelt wurden, konnten die Banden versuchsweise den Redoxzentren zugeordnet werden. Die Bandenflächen gegen die Zeit aufgetragen geben dann die Redox-Kinetik der Zentren wieder und wurden wiederum mit dem vier-ET-Modell ausgewertet. Die Ergebnisse beider Studien erlauben die Schlussfolgerung, dass der ET zur CcO in einer ptBLM mit größter Wahrscheinlichkeit dem sequentiellen Mechanismus folgt, was dem natürlichen ET von Cytochrom c zur CcO entspricht.
Resumo:
In the last decade the near-surface mounted (NSM) strengthening technique using carbon fibre reinforced polymers (CFRP) has been increasingly used to improve the load carrying capacity of concrete members. Compared to externally bonded reinforcement (EBR), the NSM system presents considerable advantages. This technique consists in the insertion of carbon fibre reinforced polymer laminate strips into pre-cut slits opened in the concrete cover of the elements to be strengthened. CFRP reinforcement is bonded to concrete with an appropriate groove filler, typically epoxy adhesive or cement grout. Up to now, research efforts have been mainly focused on several structural aspects, such as: bond behaviour, flexural and/or shear strengthening effectiveness, and energy dissipation capacity of beam-column joints. In such research works, as well as in field applications, the most widespread adhesives that are used to bond reinforcements to concrete are epoxy resins. It is largely accepted that the performance of the whole application of NSM systems strongly depends on the mechanical properties of the epoxy resins, for which proper curing conditions must be assured. Therefore, the existence of non-destructive methods that allow monitoring the curing process of epoxy resins in the NSM CFRP system is desirable, in view of obtaining continuous information that can provide indication in regard to the effectiveness of curing and the expectable bond behaviour of CFRP/adhesive/concrete systems. The experimental research was developed at the Laboratory of the Structural Division of the Civil Engineering Department of the University of Minho in Guimar\~aes, Portugal (LEST). The main objective was to develop and propose a new method for continuous quality control of the curing of epoxy resins applied in NSM CFRP strengthening systems. This objective is pursued through the adaptation of an existing technique, termed EMM-ARM (Elasticity Modulus Monitoring through Ambient Response Method) that has been developed for monitoring the early stiffness evolution of cement-based materials. The experimental program was composed of two parts: (i) direct pull-out tests on concrete specimens strengthened with NSM CFRP laminate strips were conducted to assess the evolution of bond behaviour between CFRP and concrete since early ages; and, (ii) EMM-ARM tests were carried out for monitoring the progressive stiffness development of the structural adhesive used in CFRP applications. In order to verify the capability of the proposed method for evaluating the elastic modulus of the epoxy, static E-Modulus was determined through tension tests. The results of the two series of tests were then combined and compared to evaluate the possibility of implementation of a new method for the continuous monitoring and quality control of NSM CFRP applications.
Resumo:
The aim of this work is to present various aspects of numerical simulation of particle and radiation transport for industrial and environmental protection applications, to enable the analysis of complex physical processes in a fast, reliable, and efficient way. In the first part we deal with speed-up of numerical simulation of neutron transport for nuclear reactor core analysis. The convergence properties of the source iteration scheme of the Method of Characteristics applied to be heterogeneous structured geometries has been enhanced by means of Boundary Projection Acceleration, enabling the study of 2D and 3D geometries with transport theory without spatial homogenization. The computational performances have been verified with the C5G7 2D and 3D benchmarks, showing a sensible reduction of iterations and CPU time. The second part is devoted to the study of temperature-dependent elastic scattering of neutrons for heavy isotopes near to the thermal zone. A numerical computation of the Doppler convolution of the elastic scattering kernel based on the gas model is presented, for a general energy dependent cross section and scattering law in the center of mass system. The range of integration has been optimized employing a numerical cutoff, allowing a faster numerical evaluation of the convolution integral. Legendre moments of the transfer kernel are subsequently obtained by direct quadrature and a numerical analysis of the convergence is presented. In the third part we focus our attention to remote sensing applications of radiative transfer employed to investigate the Earth's cryosphere. The photon transport equation is applied to simulate reflectivity of glaciers varying the age of the layer of snow or ice, its thickness, the presence or not other underlying layers, the degree of dust included in the snow, creating a framework able to decipher spectral signals collected by orbiting detectors.
Resumo:
Dynamic core-shell nanoparticles have received increasing attention in recent years. This paper presents a detailed study of Au-Hg nanoalloys, whose composing elements show a large difference in cohesive energy. A simple method to prepare Au@Hg particles with precise control over the composition up to 15 atom% mercury is introduced, based on reacting a citrate stabilized gold sol with elemental mercury. Transmission electron microscopy shows an increase of particle size with increasing mercury content and, together with X-ray powder diffraction, points towards the presence of a core-shell structure with a gold core surrounded by an Au-Hg solid solution layer. The amalgamation process is described by pseudo-zero-order reaction kinetics, which indicates slow dissolution of mercury in water as the rate determining step, followed by fast scavenging by nanoparticles in solution. Once adsorbed at the surface, slow diffusion of Hg into the particle lattice occurs, to a depth of ca. 3 nm, independent of Hg concentration. Discrete dipole approximation calculations relate the UV-vis spectra to the microscopic details of the nanoalloy structure. Segregation energies and metal distribution in the nanoalloys were modeled by density functional theory calculations. The results indicate slow metal interdiffusion at the nanoscale, which has important implications for synthetic methods aimed at core-shell particles.
Resumo:
Brucella suis biovar 2 is the most common aetiological agent of porcine brucellosis in Europe. B. suis biovar 2 is considered to have low zoonotic potential, but is a causative agent of reproductive losses in pigs, and it is thus economically important. The multilocus variable-number of tandem repeats genotyping analysis of 16 loci (MLVA-16) has proven to be highly discriminatory and is the most suitable assay for simultaneously identifying B. suis and tracking infections. The aim of this study was to investigate the relatedness between isolates of B. suis biovar 2 obtained during a brucellosis outbreak in domestic pigs and isolates from wild boars and hares collected from proximal or remote geographical areas by MLVA-16. A cluster analysis of the MLVA-16 data revealed that most of the isolates obtained from Switzerland clustered together, with the exception of one isolate. The outbreak isolates constituted a unique subcluster (with a genetic similarity >93.8%) distinct from that of the isolates obtained from wild animals, suggesting that direct transmission of the bacterium from wild boars to domestic pigs did not occur in this outbreak. To obtain a representative number of isolates for MLVA-16, alternative methods of Brucella spp. isolation from tissue samples were compared with conventional direct cultivation on a Brucella-selective agar. We observed an enhanced sensitivity when mechanical homogenisation was followed by host cell lysis prior to cultivation on the Brucella-selective agar. This work demonstrates that MLVA-16 is an excellent tool for both monitoring brucellosis and investigating outbreaks. Additionally, we present efficient alternatives for the isolation of Brucella spp.
Resumo:
Despite the fact that numerous studies pursued the strategy of improving collateral function in patients with peripheral artery disease (PAD), there is currently no method available to quantify collateral arterial function of the lower limb.
Resumo:
Mycoplasma hyopneumoniae is the etiological agent of enzootic pneumonia in swine. Various reports indicate that different strains are circulating in the swine population. We investigated the variety of M. hyopneumoniae strains by a newly developed genetic typing method based on the polyserine repeat motif of the LppS homolog P146. PCR amplification using M. hyopneumoniae specific, conserved primers flanking the region encoding the repeat motif, followed by sequencing and cluster analysis was carried out. The study included strains isolated from different geographic regions as well as lysates from lung swabs from a series of pig farms in Switzerland. High diversity of M. hyopneumoniae was observed but farms being in close geographic or operative contact generally seemed to be affected by the same strains. Moreover, analysis of multiple samples from single pig farms indicated that these harbored the same, farm-specific strain. The results indicate that multiple strains of M. hyopneumoniae are found in the swine population but that specific strains or clones are responsible for local outbreaks. The method presented is a highly reproducible epidemiologic tool allowing direct typing of M. hyopneumoniae from clinical material without prior isolation and cultivation of strains.
Resumo:
PURPOSE: To retrospectively evaluate the midterm patency rate of the nitinol (Viatorr, W.L. Gore and Associates, Flagstaff, Ariz) stent-graft for direct intrahepatic portacaval shunt (DIPS) creation. MATERIALS AND METHODS: Institutional Review Board approval for this retrospective HIPAA-compliant study was obtained with waiver of informed consent. DIPS was created in 18 men and one woman (median age, 54 years; range, 45-65 years) by using nitinol polytetrafluoroethylene (PTFE)-covered stent-grafts. The primary indications were intractable ascites (n = 14), acute variceal bleeding (n = 3), and hydrothorax (n = 2). Follow-up included Doppler ultrasonography at 1, 6, and 12 months and venography with manometry at 6-month intervals after the procedure. Shunt patency and cumulative survival were evaluated by using the Kaplan-Meier method and survival curves were plotted. Differences in mean portosystemic gradients (PSGs) were evaluated by using the Student t test. Multiple regression analysis for survival and DIPS patency were performed for the following parameters: Child-Pugh class, model of end-stage liver disease score, pre- and post-DIPS PSGs, pre-DIPS liver function tests, and pre-DIPS creatinine levels. RESULTS: DIPS creation was successful in all patients. Effective portal decompression and free antegrade shunt flow was achieved in all patients. Intraperitoneal bleeding occurred in one patient during the procedure and was controlled during the same procedure by placing a second nitinol stent-graft. The primary patency rate was 100% at all times during the follow-up period (range, 2 days to 30 months; mean, 256 days; median, 160 days). Flow restrictors were deployed in two (11%) of 19 patients. The 1-year mortality rate was 37% (seven of 19). CONCLUSION: Patency after DIPS creation with the nitinol PTFE-covered stent-graft was superior to that after TIPS with the nitinol stent-graft.
Resumo:
Hall thrusters have been under active development around the world since the 1960’s. Thrusters using traditional propellants such as xenon have been flown on a variety of satellite orbit raising and maintenance missions with an excellent record. To expand the mission envelope, it is necessary to lower the specific impulse of the thrusters but xenon and krypton are poor performers at specific impulses below 1,200 seconds. To enhance low specific impulse performance, this dissertation examines the development of a Hall-effect thruster which uses bismuth as a propellant. Bismuth, the heaviest non-radioactive element, holds many advantages over noble gas propellants from an energetics as well as a practical economic standpoint. Low ionization energy, large electron-impact crosssection and high atomic mass make bismuth ideal for low-specific impulse applications. The primary disadvantage lies in the high temperatures which are required to generate the bismuth vapors. Previous efforts carried out in the Soviet Union relied upon the complete bismuth vaporization and gas phase delivery to the anode. While this proved successful, the power required to vaporize and maintain gas phase throughout the mass flow system quickly removed many of the efficiency gains expected from using bismuth. To solve these problems, a unique method of delivering liquid bismuth to the anode has been developed. Bismuth is contained within a hollow anode reservoir that is capped by a porous metallic disc. By utilizing the inherent waste heat generated in a Hall thruster, liquid bismuth is evaporated and the vapors pass through the porous disc into the discharge chamber. Due to the high temperatures and material compatibility requirements, the anode was fabricated out of pure molybdenum. The porous vaporizer was not available commercially so a method of creating a refractory porous plate with 40-50% open porosity was developed. Molybdenum also does not respond well to most forms of welding so a diffusion bonding process was also developed to join the molybdenum porous disc to the molybdenum anode. Operation of the direct evaporation bismuth Hall thruster revealed interesting phenomenon. By utilizing constant current mode on a discharge power supply, the discharge voltage settles out to a stable operating point which is a function of discharge current, anode face area and average pore size on the vaporizer. Oscillations with a 40 second period were also observed. Preliminary performance data suggests that the direct evaporation bismuth Hall thruster performs similar to xenon and krypton Hall thrusters. Plume interrogation with a Retarding Potential Analyzer confirmed that bismuth ions were being efficiently accelerated while Faraday probe data gave a view of the ion density in the exhausted plume.
Resumo:
There is a need by engine manufactures for computationally efficient and accurate predictive combustion modeling tools for integration in engine simulation software for the assessment of combustion system hardware designs and early development of engine calibrations. This thesis discusses the process for the development and validation of a combustion modeling tool for Gasoline Direct Injected Spark Ignited Engine with variable valve timing, lift and duration valvetrain hardware from experimental data. Data was correlated and regressed from accepted methods for calculating the turbulent flow and flame propagation characteristics for an internal combustion engine. A non-linear regression modeling method was utilized to develop a combustion model to determine the fuel mass burn rate at multiple points during the combustion process. The computational fluid dynamic software Converge ©, was used to simulate and correlate the 3-D combustion system, port and piston geometry to the turbulent flow development within the cylinder to properly predict the experimental data turbulent flow parameters through the intake, compression and expansion processes. The engine simulation software GT-Power © is then used to determine the 1-D flow characteristics of the engine hardware being tested to correlate the regressed combustion modeling tool to experimental data to determine accuracy. The results of the combustion modeling tool show accurate trends capturing the combustion sensitivities to turbulent flow, thermodynamic and internal residual effects with changes in intake and exhaust valve timing, lift and duration.
Resumo:
The push for improved fuel economy and reduced emissions has led to great achievements in engine performance and control. These achievements have increased the efficiency and power density of gasoline engines dramatically in the last two decades. With the added power density, thermal management of the engine has become increasingly important. Therefore it is critical to have accurate temperature and heat transfer models as well as data to validate them. With the recent adoption of the 2025 Corporate Average Fuel Economy(CAFE) standard, there has been a push to improve the thermal efficiency of internal combustion engines even further. Lean and dilute combustion regimes along with waste heat recovery systems are being explored as options for improving efficiency. In order to understand how these technologies will impact engine performance and each other, this research sought to analyze the engine from both a 1st law energy balance perspective, as well as from a 2nd law exergy analysis. This research also provided insights into the effects of various parameters on in-cylinder temperatures and heat transfer as well as provides data for validation of other models. It was found that the engine load was the dominant factor for the energy distribution, with higher loads resulting in lower coolant heat transfer and higher brake work and exhaust energy. From an exergy perspective, the exhaust system provided the best waste heat recovery potential due to its significantly higher temperatures compared to the cooling circuit. EGR and lean combustion both resulted in lower combustion chamber and exhaust temperatures; however, in most cases the increased flow rates resulted in a net increase in the energy in the exhaust. The exhaust exergy, on the other hand, was either increased or decreased depending on the location in the exhaust system and the other operating conditions. The effects of dilution from lean operation and EGR were compared using a dilution ratio, and the results showed that lean operation resulted in a larger increase in efficiency than the same amount of dilution with EGR. Finally, a method for identifying fuel spray impingement from piston surface temperature measurements was found. Note: The material contained in this section is planned for submission as part of a journal article and/or conference paper in the future.
Resumo:
Data obtained with two CZE assays for determining carbohydrate-deficient transferrin (CDT) in human serum under routine conditions, the CAPILLARYS CDT and the high-resolution CEofix (HR-CEofix) CDT methods, are in agreement with patient sera that do not exhibit interferences, high trisialo-transferrin (Tf) levels or genetic variants. HR-CEofix CDT levels are somewhat higher compared to those obtained with the CAPILLARYS method and this bias corresponds to the difference of the upper reference values of the two assays. The lower resolution between disialo-Tf and trisialo-Tf observed in the CAPILLARYS system (mean: 1.24) compared to HR-CEofix (mean: 1.74) is believed to be the key for this difference. For critical sera with high trisialo-Tf levels, genetic variants, or certain interferences in the beta-region, the HR-CEofix approach is demonstrated to perform better than CAPILLARYS. However, the determination of CDT with the HR-CEofix method can also be hampered with interferences. Results with disialo-Tf values larger than 3% in the absence of asialo-Tf should be evaluated with immunosubtraction of Tf and possibly also confirmed with another CZE method or by HPLC. Furthermore, data gathered with the N Latex CDT direct immunonephelometric assay suggest that this assay can be used for screening purposes. To reduce the number of false negative results, CDT data above 2.0% should be confirmed using a separation method.
Resumo:
HCI04-Si02 has been used successfuIly for the deprotection of benzylidene acetals and the direct conversion of benzylidene acetals to the corresponding di-O-acetates. The reactions are very fast and yields are excellent