964 resultados para Descarga atmosférica
Resumo:
Titanium nitride films were grown on glass using the Cathodic Cage Plasma Deposition technique in order to verify the influence of process parameters in optical and structural properties of the films. The plasma atmosphere used was a mixture of Ar, N2 and H2, setting the Ar and N2 gas flows at 4 and 3 sccm, respectively and H2 gas flow varied from 0, 1 to 2 sccm. The deposition process was monitored by Optical Emission Spectroscopy (OES) to investigate the influence of the active species in plasma. It was observed that increasing the H2 gas flow into the plasma the luminescent intensities associated to the species changed. In this case, the luminescence of N2 (391,4nm) species was not proportional to the increasing of the H2 gas into the reactor. Other parameters investigated were diameter and number of holes in the cage. The analysis by Grazing Incidence X-Ray Diffraction (GIXRD) confirmed that the obtained films are composed by TiN and they may have variations in the nitrogen amount into the crystal and in the crystallite size. The optical microscopy images provided information about the homogeneity of the films. The atomic force microscopy (AFM) results revealed some microstructural characteristics and surface roughness. The thickness was measured by ellipsometry. The optical properties such as transmittance and reflectance (they were measured by spectrophotometry) are very sensitive to changes in the crystal lattice of the material, chemical composition and film thicknesses. Therefore, such properties are appropriate tools for verification of this process control. In general, films obtained at 0 sccm of H2 gas flow present a higher transmittance. It can be attributed to the smaller crystalline size due to a higher amount of nitrogen in the TiN lattice. The films obtained at 1 and 2 sccm of H2 gas flow have a golden appearance and XRD pattern showed peaks characteristics of TiN with higher intensity and smaller FWHM (Full Width at Half Maximum) parameter. It suggests that the hydrogen presence in the plasma makes the films more stoichiometric and becomes it more crystalline. It was observed that with higher number of holes in the lid of the cage, close to the region between the lid and the sample and the smaller diameter of the hole, the deposited film is thicker, which is justified by the most probability of plasma species reach effectively the sample and it promotes the growth of the film
Resumo:
Plasma diagnostics by Optical Emission Spectroscopy were performed for electrical discharge in three gas mixture respecting the combinations z N2 y Ar x H2, z N2 y Ar x O2 e z N2 y Ar x CH4, in which the indexes z and y systematically vary from 1 to 4 and x varies from 0 to 4, every one has dimension SCCM, resulting in 80 combinations. From the all obtained spectrums, the species CH (387,1 nm), N2+ (391,4 nm), Hβ (486,1 nm), Hα (656,3 nm), Ar (750,4 nm), O (777,4 nm) e O (842,6 nm) were analyzed because of their abundance and importance on the kinetic of reaction from the plasma to surface, besides their high dependences on the gases flows. Particularly interesting z, y and x combinations were chosen in order to study the influence of active species on the surface modification during the thermochemical treatment. From the mixtures N2 Ar O2 e N2 Ar CH4 were chosen three peculiar proportions which presented luminous intensity profile with unexpected maximum or minimum values, denominated as plasma anomaly. Those plasma concentrations were utilized as atmosphere of titanium treatment maintaining constant the control parameters pressure and temperature. It has been verified a relation among luminous intensity associated to N2+ and roughness, nanohardness and O atoms diffusion into the crystalline lattice of treated titanium and it has been seen which those properties becomes more intense precisely in the higher points found in the optical profile associated to the N2+ specie. Those parameters were verified for the mixture which involved O2 gas. For the mixture which involves CH4 gas, the relation was determinate by roughness, number of nitrogen and carbon atoms diffused into the titanium structure which presented direct proportionality with the luminous intensity referent to the N2+ and CH. It has been yet studied the formation of TiCN phases on the surface which presented to be essentially directly proportional to the increasing of the CH specie and inversely proportional to the increasing of the specie N2+
Resumo:
Brazil has vast amounts of hydric resources, whose quality has been deteriorating due to pollutant dumping. Household waste disposal is one of the main sources of water pollution, stimulating bacteria proliferation and introducing microorganisms, including those from fecal matter. Conventional water disinfection methods are a solution, but on the downside, they lead to the formation byproducts hazardous to human health. In this study, aiming to develop bactericidal filters for the disinfection of drinking water; silver nanoparticles were deposited on alumina foams through three routes: sputtering DC, dip coating and in situ chemical reduction of silver nitrate. The depositions were characterized through X-ray diffraction, scanning electron microscopy and EDS element mapping. The influence of the depositions on permeability and mechanical properties of the ceramic foams was assessed and, in sequence, a preliminary antibacterial efficiency analysis was carried out. Characterization results indicate that the chemical reduction routes were efficient in depositing homogeneously distributed silver particles and that the concentration of the metallic precursor salt affects size and morphology of the particles. The antibacterial efficiency analysis indicates that the chemical reduction filters have potential for water disinfection
Resumo:
Efforts in research and development of new technologies to reduce emission levels of pollutant gases in the atmosphere has intensified in the last decades. In this context, it can be highlighted the modern systems of electronic engine management, new automotive catalysts and the use of renewable fuels which contributes to reduce the environmental impact. The purpose of this study was a comparative analysis of gas emissions from a automotive vehicle, operating with different fuels: natural gas, AEHC or gasoline. To execute the experimental tests, a flex vehicle was installed on a chassis dynamometer equipped with a gas analyzer and other complementary accessories according to the standard guidelines of emission and security procedures. Tests were performed according to NBR 6601 and NBR 7024, which define the urban and road driving cycle, respectively. Besides the analysis of exhaust gases in the discharge tube, before and after the catalyst, using the suction probe of the gas analyzer to simulate the vehicle in urban and road traffic, were performed tests of fuel characterization. Final results were conclusive in indicating leaded gasoline as the fuel which most contributed with pollutant emissions in atmosphere and the usual gasoline being the fuel which less contributed with pollutant emissions in atmosphere
Resumo:
The resistance of aluminum and their alloys, to the corrosion phenomenon, in aqueous solutions, is a result of the oxide layer formed. However, the corrosion process in the aluminum alloy is associated with the presence a second phase of particles or the presence of chloride ions which promote the disruption of the oxide layer located producing the corrosion process. On the other hand, the term water produced is used to describe the water after the separation of the oil and gas in API separators. The volumes of produced water arrive around 5 more times to the volume of oil produced. The greatest feature of the water is the presence of numerous pollutants. Due to the increased volume of waste around the world in the current decade, the outcome and the effect of the discharge of produced water on the environment has recently become an important issue of environmental concern where numerous treatments are aimed at reducing these contaminants before disposal. Then, this study aims to investigate the electrochemical corrosion behavior of aluminum alloy 6060 in presence of water produced and the influence of organic components as well as chloride ions, by using the electrochemical techniques of linear polarization. The modification of the passive layer and the likely breakpoints were observed by atomic force microscopy (AFM). In the pit formation potential around -0.4 to -0.8 V/EAg/AgCl was observed that the diffusion of chloride ions occurs via the layer formed with the probable formation of pits. Whereas, at temperatures above 65 °C, it was observed that the range of potential for thepit formation was -0.4 to -0.5 V/EAg/AgCl. In all reactions, the concentration of Al(OH)3 in the form of a gel was observed
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
Recent years have seen a significant growth in surface modifications in titanium implants, resulting in shorter healing times in regions with low bone density. Among the different techniques, subtraction by chemical agents to increase oxidation has been applied for surface treatment of dental implants. However, this technique is generally unable to remove undesirable oxides, formed spontaneously during machining of titanium parts, raising costs due to additional decontamination stages. In order to solve this problem, the present study used plasma as an energy source to both remove these oxides and oxidize the titanium surface. In this respect, Ti disks were treated by hollow cathode discharge, using a variable DC power supply and vacuum system. Samples were previously submitted to a cleaning process using an atmosphere of Ar, H2 and a mixture of both, for 20 and 60 min. The most efficient cleaning condition was used for oxidation in a mixture of argon (60%) and oxygen (40%) until reaching a pressure of 2.2 mbar for 60 min at 500°C. Surfaces were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), atomic force microscopy (AFM), adhesion and cell proliferation. SEM showed less cell spreading and a larger number of projections orfilopodia in the treated samples compared to the control sample. AFM revealed surface defects in the treated samples, with varied geometry between peaks and valleys. Biological assays showed no significant difference in cell adhesion between treated surfaces and the control. With respect to cell proliferation, the treated surface exhibited improved performance when compared to the control sample. We concluded that the process was efficient in removing primary oxides as well as in oxidizing titanium surfaces
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
A quantificação da evaporação do solo é requerida em estudos de balanço hídrico de culturas e em aplicações que visam a aumentar a eficiência do uso da água pelos cultivos. O objetivo deste trabalho foi testar um modelo de microlisímetro (ML) para medir a evaporação do solo em condições irrigada e não irrigada. Os MLs foram construídos utilizando tubos de PVC rígido, medindo 100 mm de diâmetro interno, 150 mm de profundidade e 2,5 mm de espessura da parede. Quatro MLs foram assentados sobre a superfície de dois lisímetros de pesagem de alta precisão conduzidos com solo nu, previamente instalados no Iapar, em Londrina-PR. Os lisímetros tinham dimensões de 1,4 m de largura, 1,9 m de comprimento e 1,3 m de profundidade, e estavam sendo conduzidos com e sem irrigação. A evaporação medida nos MLs (E ML) foi comparada com a medida nos lisímetros (E L), durante quatro períodos do ano. As diferenças entre E ML e E L foram mínimas para condições de baixa e elevada demanda atmosférica, e também para condições de solo irrigado ou não irrigado, indicado que o modelo de ML testado neste trabalho é adequado para medir a evaporação do solo.
Resumo:
Objetivou-se com este trabalho avaliar o efeito da restrição alimentar nas características de carcaça de cabritos F1 Boer x Saanen. Foram utilizados 21 cabritos, pesando 15 kg de PV, distribuídos em três tratamentos (0, 30 e 60% de restrição). O consumo dos animais do tratamento 0% de restrição determinavam o consumo dos animais dos tratamentos 30 e 60% de restrição. Quando os animais do nível de restrição 0% atingiam 25 kg, estes juntamente com seus pares foram submetidos a jejum de sólido de 24 h e de líquido de 16 h. O abate ocorreu mediante descarga elétrica, seguido de sangria e retirada dos órgãos. Os ganhos de peso foram de 211,03, 126,15 e 11,71g/dia; a eficiência alimentar de 0,20, 0,18 e de 0,03; os pesos de abate de 25,44, 20,91 e 15,82kg para os tratamentos 0, 30 e 60% de restrição, respectivamente. O rendimento de carcaça quente, de carcaça fria e biológico não foram influenciados pela restrição alimentar. Somente a proporção da paleta e a do lombo foram influenciados pela restrição alimentar, com aumento linear do rendimento da paleta e decréscimo linear do rendimento do lombo. Houve efeito da restrição na redução do rendimento de gordura e aumento da proporção de osso. A restrição alimentar em níveis moderados, permitiu a obtenção de carcaças de boa qualidade, com bom rendimento, elevada proporção de músculo e baixa participação de gordura e, dependendo da relação custo:benefício, pode tornar-se boa alternativa para o produtor.
Resumo:
Este trabalho teve por objetivo a avaliação da vida útil potencial de carambolas cv. Golden Star, minimamente processadas, armazenadas em diferentes tipos de embalagens plásticas, para a concepção da atmosfera modificada. Os frutos colhidos fisiologicamente maturos apresentaram coloração verde-amarelada, sólidos solúveis (SS) médios de 6,8 ºBrix e massa média de 185 g. Antes da aplicação dos tratamentos, os frutos foram selecionados, higienizados em solução de hipoclorito de sódio (NaOCl) a 100 mg. L-1, resfriados por 12 horas a 15 ± 0,5 °C, seccionados transversalmente, sendo então novamente higienizados em solução de NaOCl a 10 mg.L-1, por 3 minutos. em seguida, os pedaços em forma de estrelas foram acondicionados em bandejas rígidas de poliestireno, com capacidade para 250 g, e revestidas com os seguintes materiais: T1: filme plástico perfurado de polietileno de baixa densidade (PEBD), de 0,006 mm; T2: filme plástico poliolefínico com antiembassamento da Dupont® (AGF), de 0,015 mm; T3: filme plástico poliolefínico da Dupont® (HF), de 0,015 mm; T4: filme plástico de PEBD, de 60 µm; T5: filme plástico de PEBD, de 80 µm; T6: filme plástico de polipropileno (PP), de 22 µm, e T7: bandeja rígida de polietileno tereftalato (PET), com capacidade para 500 mL, com tampa do mesmo material. As embalagens foram então armazenadas em câmara frigorífica a 12 ± 0,5 °C e 90 ± 3% de U.R, por 18 dias. Observou-se que não houve diferença significativa quanto aos sólidos solúveis (SS) e acidez titulável (AT). O maior número de microrganismos e valor de pH foram observados nos frutos embalados nos filmes plásticos de PEBD de 0,006 mm, AGF e HF de 0,015 mm da Dupont®. Entretanto, os frutos acondicionados nas embalagens PET apresentaram o maior teor de ácido ascórbico. da mesma forma, somente nas embalagens PET é que se conseguiu modificação atmosférica eficiente do ponto de vista da manutenção dos atributos de qualidade durante o AR. Assim, esse tratamento proporcionou adequado controle microbiológico e manutenção das características de qualidade por 18 dias para as carambolas minimamente processadas.
Resumo:
Avaliou-se a evolução anual das componentes global, direta e difusa da radiação solar incidente em superfícies inclinadas a 12,85; 22,85 e 32,85º, com face voltada ao Norte, em Botucatu-SP. Foram obtidas frações radiométricas para cada componente da radiação nas superfícies supracitadas, através de razões com a radiação global e a do topo da atmosfera. A sazonalidade foi avaliada através das médias mensais dos valores diários. As medidas ocorreram entre 04/1998 e 07/2001, em 22,85º; 08/2001 e 02/2003, em 12,85º; e de 03/2003 a 12/2007, em 32,85º, com medidas concomitantes no plano horizontal (referência). Os níveis das radiações global e direta nos planos inclinados foram inferiores no período de verão e superiores entre os equinócios, quando comparadas ao plano horizontal. A radiação difusa nas superfícies inclinadas foi inferior na maioria dos meses, com perdas de até 65%. Ocorreu uma tendência de aumento das diferenças entre as superfícies horizontal e inclinada com o incremento do ângulo em todas as componentes e frações da radiação incidente. A evolução anual das precipitações pluviométricas e da razão de nebulosidade afetou diretamente a transmissividade atmosférica das componentes direta e difusa na região.
Resumo:
This work presents in a simulated environment, to analyze the length of cable needed counterweight connected to ground rod, able to avoid the phenomenon of flashover return, back flashover, the insulator chains of transmission lines consisting of concrete structures when they are subjected to lightning standardized regarding certain resistivity values of some kinds of soil and geometric arrangements of disposal of grounding systems structures
Resumo:
In recent years there has been a significant growth in technologies that modify implant surfaces, reducing healing time and allowing their successful use in areas with low bone density. One of the most widely used techniques is plasma nitration, applied with excellent results in titanium and its alloys, with greater frequency in the manufacture of hip, ankle and shoulder implants. However, its use in dental implants is very limited due to high process temperatures (between 700 C o and 800 C o ), resulting in distortions in these geometrically complex and highly precise components. The aim of the present study is to assess osseointegration and mechanical strength of grade II nitrided titanium samples, through configuration of hollow cathode discharge. Moreover, new formulations are proposed to determine the optimum structural topology of the dental implant under study, in order to perfect its shape, make it efficient, competitive and with high definition. In the nitriding process, the samples were treated at a temperature of 450 C o and pressure of 150 Pa , during 1 hour of treatment. This condition was selected because it obtains the best wettability results in previous studies, where different pressure, temperature and time conditions were systematized. The samples were characterized by X-ray diffraction, scanning electron microscope, roughness, microhardness and wettability. Biomechanical fatigue tests were then conducted. Finally, a formulation using the three dimensional structural topology optimization method was proposed, in conjunction with an hadaptive refinement process. The results showed that plasma nitriding, using the hollow cathode discharge technique, caused changes in the surface texture of test specimens, increases surface roughness, wettability and microhardness when compared to the untreated sample. In the biomechanical fatigue test, the treated implant showed no flaws, after five million cycles, at a maximum fatigue load of 84.46 N. The results of the topological optimization process showed well-defined optimized layouts of the dental implant, with a clear distribution of material and a defined edge
Resumo:
The nanometric powders have special features that usually result in new properties, originating applications or expanding them in various fields of knowledge. Because having a high area/volume ratio, phenomena such as superficial strength of adsorption becomes greater than the weight of the powder which makes more difficult its handling. The high power of agglomeration of these powders requires study and development of equipments to enable its management into the plasma torch. The objective of this work is to develop a powder feeder which can solve the mainly problems about insertion of powder into the thermal spray developed in the laboratory of plasmas, which are carried out with plasma torch arc not transferred (plasma spray). Therefore, it was made a aluminum s powder feeder and tests were performed to verify their operation and determine its rate of deposition by spraying powders of niobium pentoxide (Nb2O5) and titanium dioxide (TiO2) with particle sizes less than 250 mesh (<0.063 mm). We used masses of 0.5 g - 1.0 g and 1.5 g of each powder in tests lasting 15 seconds - 20 to 25 seconds for each mass. The tests were performed in two ways: at atmospheric pressure using argon gas with a flow of 9 l / min as carrier gas and through a Venturi pipe also using argon gas with a flow of 9 l / min as carrier gas and with a flow of 20 l/min as the feed gas passing through the Venturi pipe. The powder feeder developed in this paper is very easy to be handling and building, resulting in feeding rate of 0.25 cm3/min - 1.37 cm3/min. The TiO2 showed higher feeding rates than the Nb2O5 in all tests, and the best rates were obtained with tests using mass 1.5 g and time of 15 seconds, reaching feeding rate of 1.37 cm3/min. The flow of feed had low interference in feeding rate during the tests