937 resultados para Derivative instruments
Resumo:
Intensive Family Preservation Services seek to reflect the values of focusing on client strengths and viewing clients as colleagues. To promote those values, Intensive Family Preservation Programs should include a systematic form of client self monitoring in their packages of outcome measures. This paper presents a model of idiographic self-monitoring used in time series, single system research design developed for Family Partners, a family preservation program of the School for Contemporary Education in Annandale, Virginia. The evaluation model provides a means of empowering client families to utilize their strengths and promote their status as colleague in determining their own goals, participating in the change process, and measuring their own progress.
Resumo:
The reliability of millimeter and sub-millimeter wave radiometer measurements is dependent on the accuracy of the loads they employ as calibration targets. In the recent past on-board calibration loads have been developed for a variety of satellite remote sensing instruments. Unfortunately some of these have suffered from calibration inaccuracies which had poor thermal performance of the calibration target as the root cause. Stringent performance parameters of the calibration target such as low reflectivity, high temperature uniformity, low mass and low power consumption combined with low volumetric requirements remain a challenge for the space instrument developer. In this paper we present a novel multi-layer absorber concept for a calibration load which offers an excellent compromise between very good radiometric performance and temperature uniformity and the mass and volumetric constraints required by space-borne calibration targets.
Resumo:
It is well known that sufficiently regular, one-dimensional payoff functions have an explicit static hedge by bonds, forward contracts, and options in a continuum of strikes. An easy and natural extension of the corresponding representation leads to static hedges based on the same instruments along with traffic light options, which have recently been introduced in the market. It is well known that the second strike derivative of non-discounted prices of vanilla options is related to the risk-neutral density of the underlying asset price in the corresponding absolutely continuous settings. Similar statements hold for traffic light options in sufficiently regular, bivariate settings.
Resumo:
OBJECTIVES To clinically evaluate the healing of mandibular Miller Class I and II isolated gingival recessions treated with the modified coronally advanced tunnel (MCAT) in conjunction with an enamel matrix derivative (EMD) and subepithelial connective tissue graft (SCTG). METHOD AND MATERIALS Sixteen healthy patients (13 women and 3 men) exhibiting one isolated mandibular Miller Class I and II gingival recessions of a depth of ≥ 3 mm, were consecutively treated with the MCAT in conjunction with EMD and SCTG. Treatment outcomes were assessed at baseline and at 12 months postoperatively. The primary outcome variable was complete root coverage (CRC) (eg, 100% root coverage). RESULTS Postoperative pain and discomfort were low and no complications such as postoperative bleeding, allergic reactions, abscesses, or loss of SCTG were observed. At 12 months, statistically significant (P < .0001) root coverage was obtained in all 16 defects. CRC was measured in 12 out of the 16 cases (75%) while in the remaining 4 defects root coverage amounted to 90% (in two cases) and 80% (in two cases), respectively. Mean root coverage was 96.25%. Mean keratinized tissue width increased from 1.98 ± 0.8 mm at baseline to 2.5 ± 0.9 mm (P < .0001) at 12 months, while mean probing depth did not show any statistically significant changes (ie, 1.9 ± 0.3 mm at baseline vs 1.8 ± 0.2 mm at 12 months). CONCLUSION Within their limits, the present results indicate that the described treatment approach may lead to predictable root coverage of isolated mandibular Miller Class I and II gingival recessions.
Resumo:
OBJECTIVES Recent studies suggest that a combination of enamel matrix derivative (EMD) with grafting material may improve periodontal wound healing/regeneration. Newly developed calcium phosphate (CaP) ceramics have been demonstrated a viable synthetic replacement option for bone grafting filler materials. AIMS This study aims to test the ability for EMD to adsorb to the surface of CaP particles and to determine the effect of EMD on downstream cellular pathways such as adhesion, proliferation, and differentiation of primary human osteoblasts and periodontal ligament (PDL) cells. MATERIALS AND METHODS EMD was adsorbed onto CaP particles and analyzed for protein adsorption patterns via scanning electron microscopy and high-resolution immunocytochemistry with an anti-EMD antibody. Cell attachment and cell proliferation were quantified using CellTiter 96 One Solution Cell Assay (MTS). Cell differentiation was analyzed using real-time PCR for genes encoding Runx2, alkaline phosphatase, osteocalcin, and collagen1α1, and mineralization was assessed using alizarin red staining. RESULTS Analysis of cell attachment revealed significantly higher number of cells attached to EMD-adsorbed CaP particles when compared to control and blood-adsorbed samples. EMD also significantly increased cell proliferation at 3 and 5 days post-seeding. Moreover, there were significantly higher mRNA levels of osteoblast differentiation markers including collagen1α1, alkaline phosphatase, and osteocalcin in osteoblasts and PDL cells cultured on EMD-adsorbed CaP particles at various time points. CONCLUSION The present study suggests that the addition of EMD to CaP grafting particles may influence periodontal regeneration by stimulating PDL cell and osteoblast attachment, proliferation, and differentiation. Future in vivo and clinical studies are required to confirm these findings. CLINICAL RELEVANCE The combination of EMD and CaP may represent an option for regenerative periodontal therapy in advanced intrabony defects.
Resumo:
OBJECTIVE Fractured endodontic instruments inhibit optimal cleaning and filling of dental root canals, which may result in a less favorable prognosis for the tooth. Several techniques are available to remove fractured instruments; however, healthy tooth substance often must be destroyed in the process. This study was intended to evaluate Nd:YAG laser treatment as a method to remove fractured stainless steel instruments without destroying healthy tooth substance. METHOD AND MATERIALS Stainless steel endodontic instruments were fractured in 33 unprocessed root canals of mandibular central and lateral incisors and premolars in vitro. A brass tube charged with solder was placed at the coronal end of the fractured instrument and laser energy was used to melt the solder, connecting the fractured instrument with the brass tube. The success rates of connecting and removal of fractured instruments from the root channel were recorded for each case. RESULTS Connecting was achieved in every case in which more than 1.5 mm of the fractured instrument was tangible (22 out of 22). In cases where less than 1.5 mm was tangible, the rate for successful connection decreased to 4 out of 11 (36.4%). Fractured endodontic instruments were removed successfully in 17 out of 22 cases (77.3%) in which more than 1.5 mm was tangible. If less than 1.5 mm was tangible, the removal success rate decreased to 3 out of 11 cases (27.3%). CONCLUSION Our data support Nd:YAG laser-mediated connecting of a brass tube to a fractured endodontic instrument as a feasible and tissue conserving removal approach when more than 1.5 mm of the instrument is tangible.
Resumo:
BACKGROUND The purpose of this study is to compare clinical outcomes in the treatment of deep non-contained intrabony defects (i.e., with ≥70% 1-wall component and a residual 2- to 3-wall component in the most apical part) using deproteinized bovine bone mineral (DBBM) combined with either enamel matrix protein derivative (EMD) or collagen membrane (CM). METHODS Forty patients with multiple intrabony defects were enrolled. Only one non-contained defect per patient with an intrabony depth ≥3 mm located in the interproximal area of single- and multirooted teeth was randomly assigned to the treatment with either EMD + DBBM (test: n = 20) or CM + DBBM (control: n = 20). At baseline and after 12 months, clinical parameters including probing depth (PD) and clinical attachment level (CAL) were recorded. The primary outcome variable was the change in CAL between baseline and 12 months. RESULTS At baseline, the intrabony component of the defects amounted to 6.1 ± 1.9 mm for EMD + DBBM and 6.0 ± 1.9 mm for CM + DBBM sites (P = 0.81). The mean CAL gain at sites treated with EMD + DBBM was not statistically significantly different (P = 0.82) compared with CM + DBBM (3.8 ± 1.5 versus 3.7 ± 1.2 mm). No statistically significant difference (P = 0.62) was observed comparing the frequency of CAL gain ≥4 mm between EMD + DBBM (60%) and CM + DBBM (50%) or comparing the frequency of residual PD ≥6 mm between EMD + DBBM (5%) and CM + DBBM (15%) (P = 0.21). CONCLUSION Within the limitations of the present study, regenerative therapy using either EMD + DBBM or CM + DBBM yielded comparable clinical outcomes in deep non-contained intrabony defects after 12 months.
Resumo:
OBJECTIVE Over 15 years have passed since an enamel matrix derivative (EMD) was introduced as a biologic agent capable of periodontal regeneration. Histologic and controlled clinical studies have provided evidence for periodontal regeneration and substantial clinical improvements following its use. The purpose of this review article was to perform a systematic review comparing the eff ect of EMD when used alone or in combination with various types of bone grafting material. DATA SOURCES A literature search was conducted on several medical databases including Medline, EMBASE, LILACS, and CENTRAL. For study inclusion, all studies that used EMD in combination with a bone graft were included. In the initial search, a total of 820 articles were found, 71 of which were selected for this review article. Studies were divided into in vitro, in vivo, and clinical studies. The clinical studies were subdivided into four subgroups to determine the eff ect of EMD in combination with autogenous bone, allografts, xenografts, and alloplasts. RESULTS The analysis from the present study demonstrates that while EMD in combination with certain bone grafts is able to improve the regeneration of periodontal intrabony and furcation defects, direct evidence supporting the combination approach is still missing. CONCLUSION Further controlled clinical trials are required to explain the large variability that exists amongst the conducted studies.
Resumo:
BACKGROUND Despite the worldwide increased prevalence of osteoporosis, no data are available evaluating the effect of an enamel matrix derivative (EMD) on the healing of periodontal defects in patients with osteoporosis. This study aims to evaluate whether the regenerative potential of EMD may be suitable for osteoporosis-related periodontal defects. METHODS Forty female Wistar rats (mean body weight: 200 g) were used for this study. An osteoporosis animal model was carried out by bilateral ovariectomy (OVX) in 20 animals. Ten weeks after OVX, bilateral fenestration defects were created at the buccal aspect of the first mandibular molar. Animals were randomly assigned to four groups of 10 animals per group: 1) control animals with unfilled periodontal defects; 2) control animals with EMD-treated defects; 3) OVX animals with unfilled defects; and 4) OVX animals with EMD-treated defects. The animals were euthanized 28 days later, and the percentage of defect fill and thickness of newly formed bone and cementum were assessed by histomorphometry and microcomputed tomography (micro-CT) analysis. The number of osteoclasts was determined by tartrate-resistant acid phosphatase (TRAP), and angiogenesis was assessed by analyzing formation of blood vessels. RESULTS OVX animals demonstrated significantly reduced bone volume in unfilled defects compared with control defects (18.9% for OVX animals versus 27.2% for control animals) as assessed by micro-CT. The addition of EMD in both OVX and control animals resulted in significantly higher bone density (52.4% and 69.2%, respectively) and bone width (134 versus 165μm) compared with untreated defects; however, the healing in OVX animals treated with EMD was significantly lower than that in control animals treated with EMD. Animals treated with EMD also demonstrated significantly higher cementum formation in both control and OVX animals. The number of TRAP-positive osteoclasts did not vary between untreated and EMD-treated animals; however, a significant increase was observed in all OVX animals. The number of blood vessels and percentage of new vessel formation was significantly higher in EMD-treated samples. CONCLUSIONS The results from the present study suggest that: 1) an osteoporotic phenotype may decrease periodontal regeneration; and 2) EMD may support greater periodontal regeneration in patients suffering from the disease. Additional clinical studies are necessary to fully elucidate the possible beneficial effect of EMD for periodontal regeneration in patients suffering from osteoporosis.
Resumo:
The new ligand 4,5-bis (2-pyridylmethylsulfanyl)-4',5'-bis(cyanoethylthio)tetrathiafulvalene (BPM-BCET-TTF) and its nickel(II) complex have been prepared and crystallographically characterized. The Ni(II) complex shows octahedral geometry around the metal ion with the coordination site occupied by the pyridyl nitrogen atoms, the thioether sulfur atoms of the ligand and cis coordination of the halide ions.
Resumo:
Methods for tracking an object have generally fallen into two groups: tracking by detection and tracking through local optimization. The advantage of detection-based tracking is its ability to deal with target appearance and disappearance, but it does not naturally take advantage of target motion continuity during detection. The advantage of local optimization is efficiency and accuracy, but it requires additional algorithms to initialize tracking when the target is lost. To bridge these two approaches, we propose a framework for unified detection and tracking as a time-series Bayesian estimation problem. The basis of our approach is to treat both detection and tracking as a sequential entropy minimization problem, where the goal is to determine the parameters describing a target in each frame. To do this we integrate the Active Testing (AT) paradigm with Bayesian filtering, and this results in a framework capable of both detecting and tracking robustly in situations where the target object enters and leaves the field of view regularly. We demonstrate our approach on a retinal tool tracking problem and show through extensive experiments that our method provides an efficient and robust tracking solution.