925 resultados para Deep overbite


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seasonal appearance of a deep chlorophyll maximum (DCM) in Lake Superior is a striking phenomenon that is widely observed; however its mechanisms of formation and maintenance are not well understood. As this phenomenon may be the reflection of an ecological driver, or a driver itself, a lack of understanding its driving forces limits the ability to accurately predict and manage changes in this ecosystem. Key mechanisms generally associated with DCM dynamics (i.e. ecological, physiological and physical phenomena) are examined individually and in concert to establish their role. First the prevailing paradigm, “the DCM is a great place to live”, is analyzed through an integration of the results of laboratory experiments and field measurements. The analysis indicates that growth at this depth is severely restricted and thus not able to explain the full magnitude of this phenomenon. Additional contributing mechanisms like photoadaptation, settling and grazing are reviewed with a one-dimensional mathematical model of chlorophyll and particulate organic carbon. Settling has the strongest impact on the formation and maintenance of the DCM, transporting biomass to the metalimnion and resulting in the accumulation of algae, i.e. a peak in the particulate organic carbon profile. Subsequently, shade adaptation becomes manifest as a chlorophyll maximum deeper in the water column where light conditions particularly favor the process. Shade adaptation mediates the magnitude, shape and vertical position of the chlorophyll peak. Growth at DCM depth shows only a marginal contribution, while grazing has an adverse effect on the extent of the DCM. The observed separation of the carbon biomass and chlorophyll maximum should caution scientists to equate the DCM with a large nutrient pool that is available to higher trophic levels. The ecological significance of the DCM should not be separated from the underlying carbon dynamics. When evaluated in its entirety, the DCM becomes the projected image of a structure that remains elusive to measure but represents the foundation of all higher trophic levels. These results also offer guidance in examine ecosystem perturbations such as climate change. For example, warming would be expected to prolong the period of thermal stratification, extending the late summer period of suboptimal (phosphorus-limited) growth and attendant transport of phytoplankton to the metalimnion. This reduction in epilimnetic algal production would decrease the supply of algae to the metalimnion, possibly reducing the supply of prey to the grazer community. This work demonstrates the value of modeling to challenge and advance our understanding of ecosystem dynamics, steps vital to reliable testing of management alternatives.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: The goal of this study was to investigate the efficacy of long-term deep brain stimulation (DBS) of the posteroventral lateral globus pallidus internus (GPi) accomplished using a single-contact monopolar electrode in patients with advanced Parkinson disease (PD). METHODS: Sixteen patients suffering from severe PD and levodopa-induced side effects such as dyskinesias and on-off fluctuations were enrolled in a prospective study protocol. There were six women and 10 men and their mean age at surgery was 65 years. All patients underwent implantation of a monopolar electrode in the posteroventral lateral GPi. Initially, nine patients received unilateral stimulation. Three of these patients underwent contralateral surgery at a later time. Ten patients received bilateral stimulation (contemporaneous bilateral surgery was performed in seven patients and staged bilateral surgery in the three patients who had received unilateral stimulation initially). Formal assessments were performed during both off-medication and on-medication (levodopa) periods preoperatively, and at 3 and 12 months postoperatively. There were no serious complications related to surgery or to DBS. Two transient adverse events occurred: in one patient a small pallidal hematoma developed, resulting in a prolonged micropallidotomy effect, and in another patient a subcutaneous hemorrhage occurred at the site of the pacemaker. In patients who received unilateral DBS, the Unified Parkinson's Disease Rating Scale activities of daily living (ADL) score during the off-levodopa period decreased from 30.8 at baseline to 20.4 at 3 months (34% improvement) and 20.6 at 12 months (33% improvement) postoperatively. The motor score during the off period improved from 57.2 at baseline to 35.2 at 3 months (38% improvement) and 35.3 at 12 months (38% improvement) postoperatively. Bilateral DBS resulted in a reduction in the ADL score during the off period from 34.9 at baseline to 22.3 at 3 months (36% improvement) and 22.9 at 12 months (34% improvement). The motor score for the off period changed from 63.4 at baseline to 40.3 at 3 months (36% improvement) and 37.5 at 12 months (41% improvement). In addition, there were significant improvements in patients' symptoms during the on period and in on-off motor fluctuations. CONCLUSIONS: Pallidal DBS accomplished using a monopolar electrode is a safe and effective procedure for treatment of advanced PD. Compared with pallidotomy, the advantages of pallidal DBS lie in its reversibility and the option to perform bilateral surgery in one session. Comparative studies in which DBS is applied to other targets are needed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: Deep brain stimulation (DBS) has emerged as a useful therapeutic option for patients with insufficient benefit from conservative treatment. METHODS: Nine patients with chronic DBS who suffered from cervical dystonia (4), generalized dystonia (2), hemidystonia (1), paroxysmal dystonia (1) and Meige syndrome (1) were available for formal follow-up at three years postoperatively, and beyond up to 10 years. All patients had undergone pallidal stimulation except one patient with paroxysmal dystonia who underwent thalamic stimulation. RESULTS: Maintained improvement was seen in all patients with pallidal stimulation up to 10 years after surgery except in one patient who had a relative loss of benefit in dystonia ratings but continued to have improved disability scores. After nine years of chronic thalamic stimulation there was a mild loss of efficacy which was regained when the target was changed to the pallidum in the patient with paroxysmal dystonia. There were no major complications related to surgery or to chronic stimulation. Pacemakers had to be replaced within 1.5 to 2 years, in general. CONCLUSION: DBS maintains marked long-term symptomatic and functional improvement in the majority of patients with dystonia.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECT: The localization of any given target in the brain has become a challenging issue because of the increased use of deep brain stimulation to treat Parkinson disease, dystonia, and nonmotor diseases (for example, Tourette syndrome, obsessive compulsive disorders, and depression). The aim of this study was to develop an automated method of adapting an atlas of the human basal ganglia to the brains of individual patients. METHODS: Magnetic resonance images of the brain specimen were obtained before extraction from the skull and histological processing. Adaptation of the atlas to individual patient anatomy was performed by reshaping the atlas MR images to the images obtained in the individual patient using a hierarchical registration applied to a region of interest centered on the basal ganglia, and then applying the reshaping matrix to the atlas surfaces. RESULTS: Results were evaluated by direct visual inspection of the structures visible on MR images and atlas anatomy, by comparison with electrophysiological intraoperative data, and with previous atlas studies in patients with Parkinson disease. The method was both robust and accurate, never failing to provide an anatomically reliable atlas to patient registration. The registration obtained did not exceed a 1-mm mismatch with the electrophysiological signatures in the region of the subthalamic nucleus. CONCLUSIONS: This registration method applied to the basal ganglia atlas forms a powerful and reliable method for determining deep brain stimulation targets within the basal ganglia of individual patients.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Want a glimpse at past vegetation? Studying pollen and other plant remains, which are preserved for example in lake sediments or mires for thousands of years, allows us to document regional occurrences of plant species over radiocarbon-dated time series. Such vegetation reconstructions derived from optical analyses of fossil samples are inherently incomplete because they only comprise taxa that contribute sufficient amounts of pollen, spores, macrofossil or other evidences. To complement optical analyses for paleoecological inference, molecular markers applied to ancient DNA (aDNA) may help in disclosing information hitherto inaccessible to biologists. Parducci et al. (2013) targeted aDNA from sediment cores of two lakes in the Scandes Mountains with generic primers in a meta-barcoding approach. When compared to palynological records from the same cores, respective taxon lists show remarkable differences in their compositions, but also in quantitative representation and in taxonomic resolution similar to a previous study (Jørgensen et al. 2012). While not free of assumptions that need critical and robust testing, notably the question of possible contamination, this study provides thrilling prospects to improve our knowledge about past vegetation composition, but also other organismic groups, stored as a biological treasure in the ground.