1000 resultados para De Fivizano, Augustin (15..-1595) -- Portraits
Resumo:
This original study describes the intra-urban distribution of cases of leprosy in residents under 15 years old in Salvador, Bahia, Brazil; the study also identifies the environment in which Mycobacterium leprae is being transmitted. The cases were distributed by operational classification, clinical forms, type of contact and the addresses were geo-referenced by neighborhood. Between 2007 and 2011, were reported 145 cases of leprosy in target population living in Salvador, corresponding to detection rates of 6.21, 6.14, 5.58, 5.41 and 6.88/100,000 inhabitants, respectively. The spatial distribution of the disease was focal. Of the 157 neighborhoods of Salvador, 44 (28.6%) notified cases of leprosy and in 22 (50%) of these were detected more than 10 cases per 100,000 inhabitants. The infectious forms were found in 40% of cases. Over 90% of cases had been living in Salvador for more than five years. Overall, 52.6% reported having had contact with another infected individual inside the household and 25% in their social circle. In Salvador, M. leprae transmission is established. The situation is a major concern, since transmission is intense at an early age, indicating that this endemic disease is expanding and contacts extend beyond individual households.
Resumo:
Ape chromosomes homologous to human chromosomes 14 and 15 were generated by a fission event of an ancestral submetacentric chromosome, where the two chromosomes were joined head-to-tail. The hominoid ancestral chromosome most closely resembles the macaque chromosome 7. In this work, we provide insights into the evolution of human chromosomes 14 and 15, performing a comparative study between macaque boundary region 14/15 and the orthologous human regions. We construct a 1.6-Mb contig of macaque BAC clones in the region orthologous to the ancestral hominoid fission site and use it to define the structural changes that occurred on human 14q pericentromeric and 15q subtelomeric regions. We characterize the novel euchromatin-heterochromatin transition region (∼20 Mb) acquired during the neocentromere establishment on chromosome 14, and find it was mainly derived through pericentromeric duplications from ancestral hominoid chromosomes homologous to human 2q14-qter and 10. Further, we show a relationship between evolutionary hotspots and low-copy repeat loci for chromosome 15, revealing a possible role of segmental duplications not only in mediating but also in "stitching" together rearrangement breakpoints.