783 resultados para Data Mining and Machine Learning


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Elektrotechnik und Informationstechnik, Diss., 2010

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Maschinenbau, Diss., 2009

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magdeburg, Univ., Fak. für Informatik, Diss., 2013

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We conducted an experiment to assess the use of olfactory traces for spatial orientation in an open environment in rats, Rattus norvegicus. We trained rats to locate a food source at a fixed location from different starting points, in the presence or absence of visual information. A single food source was hidden in an array of 19 petri dishes regularly arranged in an open-field arena. Rats were trained to locate the food source either in white light (with full access to distant visuospatial information) or in darkness (without any visual information). In both cases, the goal was in a fixed location relative to the spatial frame of reference. The results of this experiment revealed that the presence of noncontrolled olfactory traces coherent with the spatial frame of reference enables rats to locate a unique position as accurately in darkness as with full access to visuospatial information. We hypothesize that the olfactory traces complement the use of other orientation mechanisms, such as path integration or the reliance on visuospatial information. This experiment demonstrates that rats can rely on olfactory traces for accurate orientation, and raises questions about the establishment of such traces in the absence of any other orientation mechanism. Copyright 1998 The Association for the Study of Animal Behaviour.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

What's the role of unilateral measures in global climate change mitigation in a post-Durban, post 2012 global policy regime? We argue that under conditions of preference heterogeneity, unilateral emissions mitigation at a subnational level may exist even when a nation is unwilling to commit to emission cuts. As the fraction of individuals unilaterally cutting emissions in a global strongly connected network of countries evolves over time, learning the costs of cutting emissions can result in the adoption of such activities globally and we establish that this will indeed happen under certain assumptions. We analyze the features of a policy proposal that could accelerate convergence to a low carbon world in the presence of global learning.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study a general static noisy rational expectations model where investors have private information about asset payoffs, with common and private components, and about their own exposure to an aggregate risk factor, and derive conditions for existence and uniqueness (or multiplicity) of equilibria. We find that a main driver of the characterization of equilibria is whether the actions of investors are strategic substitutes or complements. This latter property in turn is driven by the strength of a private learning channel from prices, arising from the multidimensional sources of asymmetric information, in relation to the usual public learning channel. When the private learning channel is strong (weak) in relation to the public we have strong (weak) strategic complementarity in actions and potentially multiple (unique) equilibria. The results enable a precise characterization of whether information acquisition decisions are strategic substitutes or complements. We find that the strategic substitutability in information acquisition result obtained in Grossman and Stiglitz (1980) is robust. JEL Classification: D82, D83, G14 Keywords: Rational expectations equilibrium, asymmetric information, risk exposure, hedging, supply information, information acquisition.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Species distribution models (SDMs) are widely used to explain and predict species ranges and environmental niches. They are most commonly constructed by inferring species' occurrence-environment relationships using statistical and machine-learning methods. The variety of methods that can be used to construct SDMs (e.g. generalized linear/additive models, tree-based models, maximum entropy, etc.), and the variety of ways that such models can be implemented, permits substantial flexibility in SDM complexity. Building models with an appropriate amount of complexity for the study objectives is critical for robust inference. We characterize complexity as the shape of the inferred occurrence-environment relationships and the number of parameters used to describe them, and search for insights into whether additional complexity is informative or superfluous. By building 'under fit' models, having insufficient flexibility to describe observed occurrence-environment relationships, we risk misunderstanding the factors shaping species distributions. By building 'over fit' models, with excessive flexibility, we risk inadvertently ascribing pattern to noise or building opaque models. However, model selection can be challenging, especially when comparing models constructed under different modeling approaches. Here we argue for a more pragmatic approach: researchers should constrain the complexity of their models based on study objective, attributes of the data, and an understanding of how these interact with the underlying biological processes. We discuss guidelines for balancing under fitting with over fitting and consequently how complexity affects decisions made during model building. Although some generalities are possible, our discussion reflects differences in opinions that favor simpler versus more complex models. We conclude that combining insights from both simple and complex SDM building approaches best advances our knowledge of current and future species ranges.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Neuroimaging techniques provide valuable tools for diagnosing Alzheimer's disease (AD), monitoring disease progression and evaluating responses to treatment. There is currently a wide array of techniques available including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and, for recording electrical brain activity, electroencephalography (EEG). The choice of technique depends on the contrast between tissues of interest, spatial resolution, temporal resolution, requirements for functional data and the probable number of scans required. For example, while PET, CT and MRI can be used to differentiate between AD and other dementias, MRI is safer and provides better contrast of soft tissues. Neuroimaging is a technique spanning many disciplines and requires effective communication between doctors requesting a scan of a patient or group of patients and those with technical expertise. Consideration and discussion of the most suitable type of scan and the necessary settings to achieve the best results will help ensure appropriate techniques are chosen and used effectively. Neuroimaging techniques are currently expanding understanding of the structural and functional changes that occur in dementia. Further research may allow identification of early neurological signs ofAD, before clinical symptoms are evident, providing the opportunity to test preventative therapies. CombiningMRI and machine learning techniques may be a powerful approach to improve diagnosis ofAD and to predict clinical outcomes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Le "data mining", ou "fouille de données", est un ensemble de méthodes et de techniques attractif qui a connu une popularité fulgurante ces dernières années, spécialement dans le domaine du marketing. Le développement récent de l'analyse ou du renseignement criminel soulève des problèmatiques auxqwuelles il est tentant de d'appliquer ces méthodes et techniques. Le potentiel et la place du data mining dans le contexte de l'analyse criminelle doivent être mieux définis afin de piloter son application. Cette réflexion est menée dans le cadre du renseignement produit par des systèmes de détection et de suivi systématique de la criminalité répétitive, appelés processus de veille opérationnelle. Leur fonctionnement nécessite l'existence de patterns inscrits dans les données, et justifiés par les approches situationnelles en criminologie. Muni de ce bagage théorique, l'enjeu principal revient à explorer les possibilités de détecter ces patterns au travers des méthodes et techniques de data mining. Afin de répondre à cet objectif, une recherche est actuellement menée au Suisse à travers une approche interdisciplinaire combinant des connaissances forensiques, criminologiques et computationnelles.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Literacy and Numeracy for Learning and Life is the national strategy to improve literacy and numeracy standards among children and young people in the education system. This strategy seeks to address significant concerns about how well our young people are developing the literacy and numeracy skills that they will need to participate fully in the education system, to live satisfying and rewarding lives, and to participate as active and informed citizens in our society.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In July 2011 the Minister for education launched Literacy and Numeracy for Learning and Life – the national strategy to improve literacy and numeracy among children and young people. The strategy was developed following an extensive consultation process and contributions from individuals, schools, groups and organisations. This leaflet gives a flavour of the key parts of the Strategy with access to the full document on the Department’s website.