937 resultados para DISCRETE ADJOINT


Relevância:

20.00% 20.00%

Publicador:

Resumo:

El propósito de esta tesis es la implementación de métodos eficientes de adaptación de mallas basados en ecuaciones adjuntas en el marco de discretizaciones de volúmenes finitos para mallas no estructuradas. La metodología basada en ecuaciones adjuntas optimiza la malla refinándola adecuadamente con el objetivo de mejorar la precisión de cálculo de un funcional de salida dado. El funcional suele ser una magnitud escalar de interés ingenieril obtenida por post-proceso de la solución, como por ejemplo, la resistencia o la sustentación aerodinámica. Usualmente, el método de adaptación adjunta está basado en una estimación a posteriori del error del funcional de salida mediante un promediado del residuo numérico con las variables adjuntas, “Dual Weighted Residual method” (DWR). Estas variables se obtienen de la solución del problema adjunto para el funcional seleccionado. El procedimiento habitual para introducir este método en códigos basados en discretizaciones de volúmenes finitos involucra la utilización de una malla auxiliar embebida obtenida por refinamiento uniforme de la malla inicial. El uso de esta malla implica un aumento significativo de los recursos computacionales (por ejemplo, en casos 3D el aumento de memoria requerida respecto a la que necesita el problema fluido inicial puede llegar a ser de un orden de magnitud). En esta tesis se propone un método alternativo basado en reformular la estimación del error del funcional en una malla auxiliar más basta y utilizar una técnica de estimación del error de truncación, denominada _ -estimation, para estimar los residuos que intervienen en el método DWR. Utilizando esta estimación del error se diseña un algoritmo de adaptación de mallas que conserva los ingredientes básicos de la adaptación adjunta estándar pero con un coste computacional asociado sensiblemente menor. La metodología de adaptación adjunta estándar y la propuesta en la tesis han sido introducidas en un código de volúmenes finitos utilizado habitualmente en la industria aeronáutica Europea. Se ha investigado la influencia de distintos parámetros numéricos que intervienen en el algoritmo. Finalmente, el método propuesto se compara con otras metodologías de adaptación de mallas y su eficiencia computacional se demuestra en una serie de casos representativos de interés aeronáutico. ABSTRACT The purpose of this thesis is the implementation of efficient grid adaptation methods based on the adjoint equations within the framework of finite volume methods (FVM) for unstructured grid solvers. The adjoint-based methodology aims at adapting grids to improve the accuracy of a functional output of interest, as for example, the aerodynamic drag or lift. The adjoint methodology is based on the a posteriori functional error estimation using the adjoint/dual-weighted residual method (DWR). In this method the error in a functional output can be directly related to local residual errors of the primal solution through the adjoint variables. These variables are obtained by solving the corresponding adjoint problem for the chosen functional. The common approach to introduce the DWR method within the FVM framework involves the use of an auxiliary embedded grid. The storage of this mesh demands high computational resources, i.e. over one order of magnitude increase in memory relative to the initial problem for 3D cases. In this thesis, an alternative methodology for adapting the grid is proposed. Specifically, the DWR approach for error estimation is re-formulated on a coarser mesh level using the _ -estimation method to approximate the truncation error. Then, an output-based adaptive algorithm is designed in such way that the basic ingredients of the standard adjoint method are retained but the computational cost is significantly reduced. The standard and the new proposed adjoint-based adaptive methodologies have been incorporated into a flow solver commonly used in the EU aeronautical industry. The influence of different numerical settings has been investigated. The proposed method has been compared against different grid adaptation approaches and the computational efficiency of the new method has been demonstrated on some representative aeronautical test cases.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The linear instability and breakdown to turbulence induced by an isolated roughness element in a boundary layer at Mach 2:5, over an isothermal flat plate with laminar adiabatic wall temperature, have been analysed by means of direct numerical simulations, aided by spatial BiGlobal and three-dimensional parabolized (PSE-3D) stability analyses. It is important to understand transition in this flow regime since the process can be slower than in incompressible flow and is crucial to prediction of local heat loads on next-generation flight vehicles. The results show that the roughness element, with a height of the order of the boundary layer displacement thickness, generates a highly unstable wake, which is composed of a low-velocity streak surrounded by a three-dimensional high-shear layer and is able to sustain the rapid growth of a number of instability modes. The most unstable of these modes are associated with varicose or sinuous deformations of the low-velocity streak; they are a consequence of the instability developing in the three-dimensional shear layer as a whole (the varicose mode) or in the lateral shear layers (the sinuous mode). The most unstable wake mode is of the varicose type and grows on average 17% faster tan the most unstable sinuous mode and 30 times faster than the most unstable boundary layer mode occurring in the absence of a roughness element. Due to the high growthrates registered in the presence of the roughness element, an amplification factor of N D 9 is reached within 50 roughness heights from the roughness trailing edge. The independently performed Navier–Stokes, spatial BiGlobal and PSE-3D stability results are in excellent agreement with each other, validating the use of simplified theories for roughness-induced transition involving wake instabilities. Following the linear stages of the laminar–turbulent transition process, the roll-up of the three-dimensional shear layer leads to the formation of a wedge of turbulence, which spreads laterally at a rate similar to that observed in the case of compressible turbulent spots for the same Mach number.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Ripple-based controls can strongly reduce the required output capacitance in PowerSoC converter thanks to a very fast dynamic response. Unfortunately, these controls are prone to sub-harmonic oscillations and several parameters affect the stability of these systems. This paper derives and validates a simulation-based modeling and stability analysis of a closed-loop V 2Ic control applied to a 5 MHz Buck converter using discrete modeling and Floquet theory to predict stability. This allows the derivation of sensitivity analysis to design robust systems. The work is extended to different V 2 architectures using the same methodology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Void growth in ductile materials is an important problem from the fundamental and technological viewpoint. Most of the models developed to quantify and understand the void growth process did not take into account two important factors: the anisotropic nature of plastic flow in single crystals and the size effects that appear when plastic flow is confined into very small regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V-structures in the predictor sub-graph, we are also able to prove that this family of polynomials does in- deed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure and we compare these bounds to the ones obtained using Vapnik-Chervonenkis dimension.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dynamic weighing systems based on load cells are commonly used to estimate crop yields in the field. There is lack of data, however, regarding the accuracy of such weighing systems mounted on harvesting machinery, especially on that used to collect high value crops such as fruits and vegetables. Certainly, dynamic weighing systems mounted on the bins of grape harvesters are affected by the displacement of the load inside the bin when moving over terrain of changing topography. In this work, the load that would be registered in a grape harvester bin by a dynamic weighing system based on the use of a load cell was inferred by using the discrete element method (DEM). DEM is a numerical technique capable of accurately describing the behaviour of granular materials under dynamic situations and it has been proven to provide successful predictions in many different scenarios. In this work, different DEM models of a grape harvester bin were developed contemplating different influencing factors. Results obtained from these models were used to infer the output given by the load cell of a real bin. The mass detected by the load cell when the bin was inclined depended strongly on the distribution of the load within the bin, but was underestimated in all scenarios. The distribution of the load was found to be dependent on the inclination of the bin caused by the topography of the terrain, but also by the history of inclination (inclination rate, presence of static periods, etc.) since the effect of the inertia of the particles (i.e., representing the grapes) was not negligible. Some recommendations are given to try to improve the accuracy of crop load measurement in the field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

One of the common failure modes of reinforced concrete (RC) beams strengthened in flexure with a bonded fibre-reinforced polymer (FRP) is intermediate crack (IC) debonding, which is originated at a critical section in the vicinity of flexural cracks and propagates to a plate end. Despite considerable research over the last years, few reliable and simplified IC debonding strength models have been developed. This paper firstly presents a one-dimensional model based on the discrete crack approach for concrete and the spectral element method for the numerical simulation of the IC debonding process. The progressive formation of flexural cracks and subsequent concrete-FRP interfacial debonding is formulated by the introduction of a new element able to represent both phenomena simultaneously without perturbing the numerical procedure. Furthermore, with the proposed model, high frequency dynamic response for these kinds of structures can also be obtained in a very simple and non-expensive way, which makes this procedure very useful as a tool for diagnoses and detection of debonding in its initial stage by monitoring the change in local dynamic characteristics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The study area is La Colacha sub-basins from Arroyos Menores basins, natural areas at West and South of Río Cuarto in Province of Córdoba of Argentina, fertile with loess soils and monsoon temperate climate, but with soil erosions including regressive gullies that degrade them progressively. Cultivated gently since some hundred sixty years, coordinated action planning became necessary to conserve lands while keeping good agro-production. The authors had improved data on soils and on hydrology for the study area, evaluated systems of soil uses and actions to be recommended and applied Decision Support Systems (DSS) tools for that, and were conducted to use discrete multi-criteria models (MCDM) for the more global views about soil conservation and hydraulic management actions and about main types of use of soils. For that they used weighted PROMETHEE, ELECTRE, and AHP methods with a system of criteria grouped as environmental, economic and social, and criteria from their data on effects of criteria. The alternatives resulting offer indication for planning depending somehow on sub basins and on selections of weights, but actions for conservation of soils and water management measures are recommended to conserve the basins conditions, actually sensibly degrading, mainly keeping actual uses of the lands.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

El actual contexto de fabricación, con incrementos en los precios de la energía, una creciente preocupación medioambiental y cambios continuos en los comportamientos de los consumidores, fomenta que los responsables prioricen la fabricación respetuosa con el medioambiente. El paradigma del Internet de las Cosas (IoT) promete incrementar la visibilidad y la atención prestada al consumo de energía gracias tanto a sensores como a medidores inteligentes en los niveles de máquina y de línea de producción. En consecuencia es posible y sencillo obtener datos de consumo de energía en tiempo real proveniente de los procesos de fabricación, pero además es posible analizarlos para incrementar su importancia en la toma de decisiones. Esta tesis pretende investigar cómo utilizar la adopción del Internet de las Cosas en el nivel de planta de producción, en procesos discretos, para incrementar la capacidad de uso de la información proveniente tanto de la energía como de la eficiencia energética. Para alcanzar este objetivo general, la investigación se ha dividido en cuatro sub-objetivos y la misma se ha desarrollado a lo largo de cuatro fases principales (en adelante estudios). El primer estudio de esta tesis, que se apoya sobre una revisión bibliográfica comprehensiva y sobre las aportaciones de expertos, define prácticas de gestión de la producción que son energéticamente eficientes y que se apoyan de un modo preeminente en la tecnología IoT. Este primer estudio también detalla los beneficios esperables al adoptar estas prácticas de gestión. Además, propugna un marco de referencia para permitir la integración de los datos que sobre el consumo energético se obtienen en el marco de las plataformas y sistemas de información de la compañía. Esto se lleva a cabo con el objetivo último de remarcar cómo estos datos pueden ser utilizados para apalancar decisiones en los niveles de procesos tanto tácticos como operativos. Segundo, considerando los precios de la energía como variables en el mercado intradiario y la disponibilidad de información detallada sobre el estado de las máquinas desde el punto de vista de consumo energético, el segundo estudio propone un modelo matemático para minimizar los costes del consumo de energía para la programación de asignaciones de una única máquina que deba atender a varios procesos de producción. Este modelo permite la toma de decisiones en el nivel de máquina para determinar los instantes de lanzamiento de cada trabajo de producción, los tiempos muertos, cuándo la máquina debe ser puesta en un estado de apagada, el momento adecuado para rearrancar, y para pararse, etc. Así, este modelo habilita al responsable de producción de implementar el esquema de producción menos costoso para cada turno de producción. En el tercer estudio esta investigación proporciona una metodología para ayudar a los responsables a implementar IoT en el nivel de los sistemas productivos. Se incluye un análisis del estado en que se encuentran los sistemas de gestión de energía y de producción en la factoría, así como también se proporcionan recomendaciones sobre procedimientos para implementar IoT para capturar y analizar los datos de consumo. Esta metodología ha sido validada en un estudio piloto, donde algunos indicadores clave de rendimiento (KPIs) han sido empleados para determinar la eficiencia energética. En el cuarto estudio el objetivo es introducir una vía para obtener visibilidad y relevancia a diferentes niveles de la energía consumida en los procesos de producción. El método propuesto permite que las factorías con procesos de producción discretos puedan determinar la energía consumida, el CO2 emitido o el coste de la energía consumida ya sea en cualquiera de los niveles: operación, producto o la orden de fabricación completa, siempre considerando las diferentes fuentes de energía y las fluctuaciones en los precios de la misma. Los resultados muestran que decisiones y prácticas de gestión para conseguir sistemas de producción energéticamente eficientes son posibles en virtud del Internet de las Cosas. También, con los resultados de esta tesis los responsables de la gestión energética en las compañías pueden plantearse una aproximación a la utilización del IoT desde un punto de vista de la obtención de beneficios, abordando aquellas prácticas de gestión energética que se encuentran más próximas al nivel de madurez de la factoría, a sus objetivos, al tipo de producción que desarrolla, etc. Así mismo esta tesis muestra que es posible obtener reducciones significativas de coste simplemente evitando los períodos de pico diario en el precio de la misma. Además la tesis permite identificar cómo el nivel de monitorización del consumo energético (es decir al nivel de máquina), el intervalo temporal, y el nivel del análisis de los datos son factores determinantes a la hora de localizar oportunidades para mejorar la eficiencia energética. Adicionalmente, la integración de datos de consumo energético en tiempo real con datos de producción (cuando existen altos niveles de estandarización en los procesos productivos y sus datos) es esencial para permitir que las factorías detallen la energía efectivamente consumida, su coste y CO2 emitido durante la producción de un producto o componente. Esto permite obtener una valiosa información a los gestores en el nivel decisor de la factoría así como a los consumidores y reguladores. ABSTRACT In today‘s manufacturing scenario, rising energy prices, increasing ecological awareness, and changing consumer behaviors are driving decision makers to prioritize green manufacturing. The Internet of Things (IoT) paradigm promises to increase the visibility and awareness of energy consumption, thanks to smart sensors and smart meters at the machine and production line level. Consequently, real-time energy consumption data from the manufacturing processes can be easily collected and then analyzed, to improve energy-aware decision-making. This thesis aims to investigate how to utilize the adoption of the Internet of Things at shop floor level to increase energy–awareness and the energy efficiency of discrete production processes. In order to achieve the main research goal, the research is divided into four sub-objectives, and is accomplished during four main phases (i.e., studies). In the first study, by relying on a comprehensive literature review and on experts‘ insights, the thesis defines energy-efficient production management practices that are enhanced and enabled by IoT technology. The first study also explains the benefits that can be obtained by adopting such management practices. Furthermore, it presents a framework to support the integration of gathered energy data into a company‘s information technology tools and platforms, which is done with the ultimate goal of highlighting how operational and tactical decision-making processes could leverage such data in order to improve energy efficiency. Considering the variable energy prices in one day, along with the availability of detailed machine status energy data, the second study proposes a mathematical model to minimize energy consumption costs for single machine production scheduling during production processes. This model works by making decisions at the machine level to determine the launch times for job processing, idle time, when the machine must be shut down, ―turning on‖ time, and ―turning off‖ time. This model enables the operations manager to implement the least expensive production schedule during a production shift. In the third study, the research provides a methodology to help managers implement the IoT at the production system level; it includes an analysis of current energy management and production systems at the factory, and recommends procedures for implementing the IoT to collect and analyze energy data. The methodology has been validated by a pilot study, where energy KPIs have been used to evaluate energy efficiency. In the fourth study, the goal is to introduce a way to achieve multi-level awareness of the energy consumed during production processes. The proposed method enables discrete factories to specify energy consumption, CO2 emissions, and the cost of the energy consumed at operation, production and order levels, while considering energy sources and fluctuations in energy prices. The results show that energy-efficient production management practices and decisions can be enhanced and enabled by the IoT. With the outcomes of the thesis, energy managers can approach the IoT adoption in a benefit-driven way, by addressing energy management practices that are close to the maturity level of the factory, target, production type, etc. The thesis also shows that significant reductions in energy costs can be achieved by avoiding high-energy price periods in a day. Furthermore, the thesis determines the level of monitoring energy consumption (i.e., machine level), the interval time, and the level of energy data analysis, which are all important factors involved in finding opportunities to improve energy efficiency. Eventually, integrating real-time energy data with production data (when there are high levels of production process standardization data) is essential to enable factories to specify the amount and cost of energy consumed, as well as the CO2 emitted while producing a product, providing valuable information to decision makers at the factory level as well as to consumers and regulators.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work, various turbulent solutions of the two-dimensional (2D) and three-dimensional compressible Reynolds averaged Navier?Stokes equations are analyzed using global stability theory. This analysis is motivated by the onset of flow unsteadiness (Hopf bifurcation) for transonic buffet conditions where moderately high Reynolds numbers and compressible effects must be considered. The buffet phenomenon involves a complex interaction between the separated flow and a shock wave. The efficient numerical methodology presented in this paper predicts the critical parameters, namely, the angle of attack and Mach and Reynolds numbers beyond which the onset of flow unsteadiness appears. The geometry, a NACA0012 profile, and flow parameters selected reproduce situations of practical interest for aeronautical applications. The numerical computation is performed in three steps. First, a steady baseflow solution is obtained; second, the Jacobian matrix for the RANS equations based on a finite volume discretization is computed; and finally, the generalized eigenvalue problem is derived when the baseflow is linearly perturbed. The methodology is validated predicting the 2D Hopf bifurcation for a circular cylinder under laminar flow condition. This benchmark shows good agreement with the previous published computations and experimental data. In the transonic buffet case, the baseflow is computed using the Spalart?Allmaras turbulence model and represents a mean flow where the high frequency content and length scales of the order of the shear-layer thickness have been averaged. The lower frequency content is assumed to be decoupled from the high frequencies, thus allowing a stability analysis to be performed on the low frequency range. In addition, results of the corresponding adjoint problem and the sensitivity map are provided for the first time for the buffet problem. Finally, an extruded three-dimensional geometry of the NACA0012 airfoil, where all velocity components are considered, was also analyzed as a Triglobal stability case, and the outcoming results were compared to the previous 2D limited model, confirming that the buffet onset is well detected.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation of thermodynamically consistent (TC) time integration methods was introduced by a general procedure based on the GENERIC form of the evolution equations for thermo-mechanical problems. The use of the entropy was reported to be the best choice for the thermodynamical variable to easily provide TC integrators. Also the employment of the internal energy was proved to not involve excessive complications. However, attempts towards the use of the temperature in the design of GENERIC-based TC schemes have so far been unfruitful. This paper complements the said procedure to attain TC integrators by presenting a TC scheme based on the temperature as thermodynamical state variable. As a result, the problems which arise due to the use of the entropy are overcome, mainly the definition of boundary conditions. What is more, the newly proposed method exhibits the general enhanced numerical stability and robustness properties of the entropy formulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bayesian network classifiers are a powerful machine learning tool. In order to evaluate the expressive power of these models, we compute families of polynomials that sign-represent decision functions induced by Bayesian network classifiers. We prove that those families are linear combinations of products of Lagrange basis polynomials. In absence of V -structures in the predictor sub-graph, we are also able to prove that this family of polynomials does indeed characterize the specific classifier considered. We then use this representation to bound the number of decision functions representable by Bayesian network classifiers with a given structure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this work is addressed the topic of estimation of velocity and acceleration from digital position data. It is presented a review of several classic methods and implemented with real position data from a low cost digital sensor of a hydraulic linear actuator. The results are analyzed and compared. It is shown that static methods have a limited bandwidth application, and that the performance of some methods may be enhanced by adapting its parameters according to the current state.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The problem of channel estimation for multicarrier communications is addressed. We focus on systems employing the Discrete Cosine Transform Type-I (DCT1) even at both the transmitter and the receiver, presenting an algorithm which achieves an accurate estimation of symmetric channel filters using only a small number of training symbols. The solution is obtained by using either matrix inversion or compressed sensing algorithms. We provide the theoretical results which guarantee the validity of the proposed technique for the DCT1. Numerical simulations illustrate the good behaviour of the proposed algorithm.