520 resultados para DILATED CARDIOMYOPATHY
Resumo:
This article presents the proceedings of a symposium presented at the ISBRA 12th World Congress on Biomedical Alcohol Research, held in Heidelberg/Mannheim, Germany, September 29 through October 2, 2004. The organizers of the symposium were Simon Worrall and Victor Preedy, and the symposium was chaired by Onni Niemelä and Geoffrey Thiele. The presentations scheduled for this symposium were (1) Adduct chemistry and mechanisms of adduct formation, by Thomas L. Freeman; (2) Malondialdehyde- acetaldehyde adducts: the 2004 update, by Geoffrey Thiele; (3) Adduct formation in the liver, by Simon Worrall; (4) Protein adducts in alcoholic cardiomyopathy, by Onni Niemelä; and (5) Alcoholic skeletal muscle myopathy: a role for protein adducts, by Victor R. Preedy.
Resumo:
The use of ultrasound as a diagnostic tool in birds has been documented for cardiac, urogenital, and liver disease. However, its use in gastrointestinal tract disease is not defined. Therefore, the purpose of this study was to compare the ultrasonographic findings of the intestine and liver of six healthy racing pigeons with those of six racing pigeons with gastrointestinal disease. The echogenicity of the liver was significantly different between the two groups. Pigeons with gastrointestinal disease had less homogeneous liver echogenicity with focal heterogeneous areas and the hepatic blood vessels were visible and dilated. The duodenum was visualized and its mean diameter of 7.2 +/- 0.3 mm in the diseased pigeons was significantly wider (P < 0.001) than the 5.7 +/- 0.2 mm in healthy birds. The thickness of the duodenal wall in healthy and diseased pigeons was 1.6 +/- 0.1 and 2.4 +/- 0.1 mm, respectively, and they were significantly different (P < 0.001). We defined baseline measurements for the duodenal loop in pigeons and provided evidence that ultrasound can be a useful diagnostic tool for investigating intestinal disease in pigeons.
Congenital disorder of glycosylation type Ia presenting as early-onset cerebellar ataxia in an adult
Resumo:
Congenital disorders of glycosylation (CDG) are a recently described, underrecognized group of syndromes characterized biochemically by abnormal glycosylation of serum and cellular glycoproteins. We report a previously undiagnosed adult male who presented with early-onset cerebellar ataxia in the context of mental impairment, peripheral neuropathy, retinopathy, body dysmorphism, cardiomyopathy, and hypogonadism. Newly available screening and genetic testing confirmed the diagnosis as CDG type Ia. This case emphasizes that CDG should be considered as a differential diagnosis for adults with early-onset cerebellar ataxia, particularly in those persons with the aforementioned features, and that undiagnosed cases of childhood ataxia may require reassessment now that testing is available. © 2006 Movement Disorder Society
Resumo:
Diabetes mellitus is responsible for a spectrum of cardiovascular disease. The best known complications arise from endothelial dysfunction, oxidation, inflammation, and vascular remodelling and contribute to atherogenesis. However, the effects on the heart also relate to concurrent hypertensive heart disease, as well as direct effects of diabetes on the myocardium. Diabetic heart disease, defined as myocardial disease in patients with diabetes that cannot be ascribed to hypertension, coronary artery disease, or other known cardiac disease, is reviewed.
Resumo:
Brain natriuretic peptide (BNP) levels are simple and objective measures of cardiac function. These measurements can be used to diagnose heart failure, including diastolic dysfunction, and using them has been shown to save money in the emergency department setting. The high negative predictive value of BNP tests is particularly helpful for ruling out heart failure. Treatment with angiotensin-converting enzyme inhibitors, angiotensin-II receptor blockers, spironolactone, and diuretics reduces BNP levels, suggesting that BNP testing may have a role in monitoring patients with heart failure. However, patients with treated chronic stable heart failure may have levels in the normal range (i.e., BNP less than 100 pg per mL and N-terminal proBNP less than 125 pg per mL in patients younger than 75 years). Increases in BNP levels may be caused by intrinsic cardiac dysfunction or may be secondary to other causes such as pulmonary or renal diseases (e.g., chronic hypoxia). BNP tests are correlated with other measures of cardiac status such as New York Heart Association classification. BNP level is a strong predictor of risk of death and cardiovascular events in patients previously diagnosed with heart failure or cardiac dysfunction.
Resumo:
Background. Exercise therapy improves functional capacity in CHF, but selection and individualization of training would be helped by a simple non-invasive marker of peak VO2. Peak VO2 in these pts is difficult to predict without direct measurement, and LV ejection fraction is a poor predictor. Myocardial tissue velocities are less load-dependent, and may be predictive of the exercise response in CHF pts. We sought to use tissue velocity as a predictor of peak VO2 in CHF pts. Methods. Resting 2D-echocardiography and tissue Doppler imaging were performed in 182 CHF pts (159 male, age 62±10 years) before and after metabolic exercise testing. The majority of these patients (129, 71%) had an ischemic cardiomyopathy, with resting EF of 35±13% and a peak VO2 of 13.5±4.7 ml/kg/min. Results. Neither resting EF (r=0.15) nor peak EF (r=0.18, both p=NS) were correlated with peak VO2. However, peak VO2 correlated with peak systolic velocity in septal (Vss, r=0.31) and lateral walls (Vsl, r=0.26, both p=0.01). In a general linear model (r2 = 0.25), peak VO2 was calculated from the following equation: 9.6 + 0.68*Vss - 0.09*age + 0.06*maximum HR. This model proved to be a superior predictor of peak VO2 (r=0.51, p=0.01) than the standard prediction equations of Wasserman (r= -0.12, p=0.01). Conclusions. Resting tissue Doppler, age and maximum heart rate may be used to predict functional capacity in CHF patients. This may be of use in selecting and following the response to therapy, including for exercise training.
Resumo:
The purpose of the following studies was to explore the effect of systemic vascular and endothelial dysfunction upon the ocular circulation and functionality of the retina. There are 6 principal sections to the present work. Retinal vessel activity in smokers and non-smokers: the principal findings of this work were: chronic smoking affects retinal vessel motion at baseline and during stimulation with flickering light; chronic smoking leads to a vaso-constrictory shift in retinal arteriolar reactivity to flicker; retinal arteriolar elasticity is decreased in chronic smokers. The effect of acute smoking on retinal vessel dynamics in smokers and non-smokers: the principal finding of this work was that retinal reactivity in chronic smokers is blunted when exposed to clicker light provocation immediately after smoking one cigarette. Ocular blood flow in coronary artery disease: The principal findings of this work were: retrobulbar and retinal blood flow is preserved in CAD patients, despite a change pulse wave transmission; arterial retinal response to flickering light provocation is significantly delayed in CAD patients; retinal venular diameters are significantly dilated in CAD patients. Autonomic nervous system function and peripheral circulation in CAD: The principal findings in this work were: CAD patients demonstrate a sympathetic overdrive during a 24 period; a delay in peripheral vascular reactivity (nail-fold capillaries) as observed in patients suffering from CAD could be caused by either arteriosclerotic changes of the vascular walls or due to systemic haemodynamic changes. Visual function in CAD: The principal findings in this work were: overall visual function in CAD patients is preserved, despite a decrease in contrast sensitivity; applying a filtering technique selecting those with greater coefficient of variance which in turn represents a decrease in reliability, some patients appear to have an impaired visual function as assessed using FDT visual field evaluation. Multiple functional, structural and biochemical vascular endothelial dysfunctions in patients suffering from CAD: relationships and possible implications: The principal findings of this work were: BMI significantly correlated with vWF (a marker of endothelial function) in CAD patients. Retinal vascular reactivity showed a significant correlation with peripheral reactivity parameters in controls which lacked in the CAD group and could reflect a loss in vascular endothelial integrity; visual field parameters as assessed by frequency doubling technology were strongly related with systemic vascular elasticity (ambulatory arterial stiffness index) in controls but not CAD patients.
Resumo:
PURPOSE: To assess the clinical outcomes after implantation of a new hydrophobic acrylic toric intraocular lens (IOL) to correct preexisting corneal astigmatism in patients having routine cataract surgery. SETTING: Four hospital eye clinics throughout Europe. DESIGN: Cohort study. METHODS: This study included eyes with at least 0.75 diopter (D) of preexisting corneal astigmatism having routine cataract surgery. Phacoemulsification was performed followed by insertion and alignment of a Tecnis toric IOL. Patients were examined 4 to 8 weeks postoperatively; uncorrected distance visual acuity (UDVA), corrected distance visual acuity, manifest refraction, and keratometry were measured. Individual patient satisfaction with uncorrected vision and the surgeon’s assessment of ease of handling and performance of the IOL were also documented. The cylinder axis of the toric IOL was determined by dilated slitlamp examination. RESULTS: The study enrolled 67 eyes of 60 patients. Four to 8 weeks postoperatively, the mean UDVA was 0.15 logMAR G 0.17 (SD) and the UDVA was 20/40 or better in 88% of eyes. The mean refractive cylinder decreased significantly postoperatively, from -1.91 +/- 1.07 D to -0.67 +/- 0.54 D. No significant change in keratometric cylinder was observed. The mean absolute IOL misalignment from the intended axis was 3.4 degrees (range 0 to 12 degrees). The good UDVA resulted in high levels of patient satisfaction. CONCLUSION: Implantation of the new toric IOL was an effective, safe, and predictable method to manage corneal astigmatism in patients having routine cataract surgery.
Resumo:
PURPOSE: To validate a new miniaturised, open-field wavefront device which has been developed with the capacity to be attached to an ophthalmic surgical microscope or slit-lamp. SETTING: Solihull Hospital and Aston University, Birmingham, UK DESIGN: Comparative non-interventional study. METHODS: The dynamic range of the Aston Aberrometer was assessed using a calibrated model eye. The validity of the Aston Aberrometer was compared to a conventional desk mounted Shack-Hartmann aberrometer (Topcon KR1W) by measuring the refractive error and higher order aberrations of 75 dilated eyes with both instruments in random order. The Aston Aberrometer measurements were repeated five times to assess intra-session repeatability. Data was converted to vector form for analysis. RESULTS: The Aston Aberrometer had a large dynamic range of at least +21.0 D to -25.0 D. It gave similar measurements to a conventional aberrometer for mean spherical equivalent (mean difference ± 95% confidence interval: 0.02 ± 0.49D; correlation: r=0.995, p<0.001), astigmatic components (J0: 0.02 ± 0.15D; r=0.977, p<0.001; J45: 0.03 ± 0.28; r=0.666, p<0.001) and higher order aberrations RMS (0.02 ± 0.20D; r=0.620, p<0.001). Intraclass correlation coefficient assessments of intra-sessional repeatability for the Aston Aberrometer were excellent (spherical equivalent =1.000, p<0.001; astigmatic components J0 =0.998, p<0.001, J45=0.980, p<0.01; higher order aberrations RMS =0.961, p<0.001). CONCLUSIONS: The Aston Aberrometer gives valid and repeatable measures of refractive error and higher order aberrations over a large range. As it is able to measure continuously, it can provide direct feedback to surgeons during intraocular lens implantations and corneal surgery as to the optical status of the visual system.
Resumo:
Systemic hypertension is an important public health concern. If optometrists are to perform a more active role in the detection and monitoring of high blood pressure (BP), there is a need to improve the consistency of describing the retinal vasculature and to assess patient's ability to correctly report the diagnosis of hypertension, its control and medication. One hundred and one patients aged >40 years were dilated and had fundus photography performed. BP was measured and a self-reported history of general health and current medication was compared with the records of their general practitioner (GP). The status of the retinal vasculature was quantified using a numeric scale by five clinicians and this was compared to the same evaluation performed with the aid of a basic pictorial grading scale. Image analysis was used to objectively measure the artery-to-vein (A/V) ratio and arterial reflex. Arteriolar tortuosity and calibre changes were found to be the most sensitive retinal signs of high BP. Using the grading scale to describe the retinal vasculature significantly improved inter- and intra-observer repeatability. Almost half the patients examined were on medication for high BP or cardiovascular disease. Patients' ability to give their complete medical history was poor, as was their ability to recall what medication they had been prescribed. GPs indicated it was useful to receive details of their patient's BP when it was >140/90 mmHg. The use of improved description of the retinal vasculature and stronger links between optometrists and GPs may enhance future patient care. © 2001 The College of Optometrists. Published by Elsevier Science Ltd. All rights reserved.
Resumo:
Purpose: To assess the inter and intra observer variability of subjective grading of the retinal arterio-venous ratio (AVR) using a visual grading and to compare the subjectively derived grades to an objective method using a semi-automated computer program. Methods: Following intraocular pressure and blood pressure measurements all subjects underwent dilated fundus photography. 86 monochromatic retinal images with the optic nerve head centred (52 healthy volunteers) were obtained using a Zeiss FF450+ fundus camera. Arterio-venous ratios (AVR), central retinal artery equivalent (CRAE) and central retinal vein equivalent (CRVE) were calculated on three separate occasions by one single observer semi-automatically using the software VesselMap (ImedosSystems, Jena, Germany). Following the automated grading, three examiners graded the AVR visually on three separate occasions in order to assess their agreement. Results: Reproducibility of the semi-automatic parameters was excellent (ICCs: 0.97 (CRAE); 0.985 (CRVE) and 0.952 (AVR)). However, visual grading of AVR showed inter grader differences as well as discrepancies between subjectively derived and objectively calculated AVR (all p < 0.000001). Conclusion: Grader education and experience leads to inter-grader differences but more importantly, subjective grading is not capable to pick up subtle differences across healthy individuals and does not represent true AVR when compared with an objective assessment method. Technology advancements mean we no longer rely on opthalmoscopic evaluation but can capture and store fundus images with retinal cameras, enabling us to measure vessel calibre more accurately compared to visual estimation; hence it should be integrated in optometric practise for improved accuracy and reliability of clinical assessments of retinal vessel calibres. © 2014 Spanish General Council of Optometry.
Resumo:
The lack of analytical models that can accurately describe large-scale networked systems makes empirical experimentation indispensable for understanding complex behaviors. Research on network testbeds for testing network protocols and distributed services, including physical, emulated, and federated testbeds, has made steady progress. Although the success of these testbeds is undeniable, they fail to provide: 1) scalability, for handling large-scale networks with hundreds or thousands of hosts and routers organized in different scenarios, 2) flexibility, for testing new protocols or applications in diverse settings, and 3) inter-operability, for combining simulated and real network entities in experiments. This dissertation tackles these issues in three different dimensions. First, we present SVEET, a system that enables inter-operability between real and simulated hosts. In order to increase the scalability of networks under study, SVEET enables time-dilated synchronization between real hosts and the discrete-event simulator. Realistic TCP congestion control algorithms are implemented in the simulator to allow seamless interactions between real and simulated hosts. SVEET is validated via extensive experiments and its capabilities are assessed through case studies involving real applications. Second, we present PrimoGENI, a system that allows a distributed discrete-event simulator, running in real-time, to interact with real network entities in a federated environment. PrimoGENI greatly enhances the flexibility of network experiments, through which a great variety of network conditions can be reproduced to examine what-if questions. Furthermore, PrimoGENI performs resource management functions, on behalf of the user, for instantiating network experiments on shared infrastructures. Finally, to further increase the scalability of network testbeds to handle large-scale high-capacity networks, we present a novel symbiotic simulation approach. We present SymbioSim, a testbed for large-scale network experimentation where a high-performance simulation system closely cooperates with an emulation system in a mutually beneficial way. On the one hand, the simulation system benefits from incorporating the traffic metadata from real applications in the emulation system to reproduce the realistic traffic conditions. On the other hand, the emulation system benefits from receiving the continuous updates from the simulation system to calibrate the traffic between real applications. Specific techniques that support the symbiotic approach include: 1) a model downscaling scheme that can significantly reduce the complexity of the large-scale simulation model, resulting in an efficient emulation system for modulating the high-capacity network traffic between real applications; 2) a queuing network model for the downscaled emulation system to accurately represent the network effects of the simulated traffic; and 3) techniques for reducing the synchronization overhead between the simulation and emulation systems.
Resumo:
Neural crest cells originate from the dorsal most region of the embryonic neural tube. These cells migrate into several embryonic locations and differentiate into a variety of cell types. Cardiac neural crest (CNC) cells are a set of neural crest progenitors that aid in the proper formation of the cardiac septum, which separates the pulmonary from the systemic circulation. We have used Splotch mice to investigate whether the murine CNC cells play a role during the development oft he myocardium and the conduction system. Splotch mice carry a mutation in the P AX3 transcription factor, and display a problem in CNC cell migration. A scanning-electron-microscopy analysis of Splotch mutant-embryonic-hearts reveals abnormalities in the interventricular septum. In addition, the right and left ventricular cavities appear dilated relative to a wild type heart. Hoechst nuclei staining of Splotch heart cryosections demonstrates a decreased number of cardiomyocytes and a corresponding thinner ventricular wall. The absence of Connexin 40 in the ventricles of Splotch mutants, suggests conduction system defects. These results support the evidence that CNC cell signaling plays a role in modulating the growth and development of murine cardiomyocytes and their differentiation into conductile cells.
Resumo:
Introduction: Sudden cardiac death (SCD) in young people (ages 2-40) is a tragedy for families and communities alike. It has multiple causes, one of which is an underlying genetic arrhythmogenic cardiomyopathy. A study from Ontario (ON) using a 2008 cohort assessed the incidence of SCD in persons aged 2-40 years to be 2.64/100,000 person-years. We hypothesized that Newfoundland & Labrador (NL) may have a higher incidence of early SCD in ages 2-40 due to possible underlying genetic causes given the historical genetic isolation of the population and the founder mutations already identified (ex. PKP2, RYR2, TMEM43). Methods: We ascertained cases of sudden death from the comprehensive Medical Examiners’ provincial database for the years 2008 and 1997; 2008 as a direct comparison to ON, and 1997 as it represented a time when the implantable cardioverter-defibrillator was not available in NL. Each case of sudden death was individually analyzed to determine likelihood of SCD. Results: There were 119 cases in 2008 and 157 cases in 1997. The incidence of SCD for ages 2-40 in 2008 was 7.32/100,000 persons. This was significantly higher than the incidence in Ontario. The incidence of SCD was not significantly higher in 1997 than 2008. Coronary artery disease was a major cause of death in all cohorts, similar to Ontario (non-significant difference). Conclusion: In general, there was a trend of more arrhythmogenic deaths in the young and more structural cardiac deaths as age increased. This reflects the cause of SCD in the young is often genetic in nature, while older deaths are often due to coronary artery disease, a disease heavily influenced by environment. To conclude, SCD in NL occurs at a higher incidence than ON, further research is needed on the topic.
Resumo:
Chagas disease, caused by the parasite Trypanosoma cruzi, is the cause of Chronic chagasic cardiomyopathy (CCC). The prospection of innovative therapeutic agents against CCC is a major task. The recombinant form of 21 (rP21), a secreted T. cruzi protein involved in host cell invasion and on progression of chronic inflammatory processes have been studied as a potential novel therapeutic target. Our present work aimed to verify and investigate the impact of rP21 in the formation of blood vessels in vitro and in vivo. First, tEnd cells were treated with different concentrations of rP21 or bacterial extract and viability and cellular adhesion were evaluated by MTT and angiogenesis inhibition by Matrigel tube formation assay and murine model. To verify the proteolytic activity of rP21 on extracellular matrix (ECM) components, fibrinogen, matrigel and fibronectin was incubated with rP21 or not. In addition, we performed proliferation assays and cell cycle analysis. Furthermore, the accumulation and distribution of F-actin was determined by Phalloidin staining using ImageJ software. Finally, tEnd cells were incubated with rP21 and the mRNA levels were analyzed by real-time PCR. Our results showed that rP21 did not alter cell viability and adhesion, but strongly inhibited vessel formation in vitro and in vivo. Tube formation assay showed that angiogenesis inhibition was dependent of the CXCR4-rP21 binding. In addition to these results, we observed that the rP21 was able to inhibit cell proliferation and promoted a significant reduction in the number of 4n cells (G2/M phase). Moreover, we found that rP21 significantly increased F-actin levels and this protein was able to modulate expression of genes related to angiogenesis and actin cytoskeleton. However, rP21 showed no significant activity on the matrix components. In this sense, we conclude that the rP21-endothelial cells (ECs) interaction via CXCR4 promotes inhibition of vessel formation through a cascade of intracellular events, such as inhibition of ECs proliferation and modulation of the expression of molecules associated with angiogenic processes and actin cytoskeleton.