981 resultados para DGGE (denaturating gradient gel electrophoresis)
Resumo:
Since its inception in the 80's, capillary electrophoresis has matured into a well established technique for the separation and analysis of complex samples. One of its strongest aspects is the ability to handle materials from a diversity of chemical classes, ranging from few to millions of Daltons. This is only possible because several modes of electrophoresis can be performed in a single capillary format. In this work, relevant aspects of capillary zone electrophoresis in its three modes (free solution, micellar and gel), capillary isoelectric focusing and capillary isotachophoresis are discussed and many representative applications are presented.
Resumo:
Nontypable Haemophilus influenzae (NTHi) has emerged as an important opportunistic pathogen causing infection in adults suffering obstructive lung diseases. Existing evidence associates chronic infection by NTHi to the progression of the chronic respiratory disease, but specific features of NTHi associated with persistence have not been comprehensively addressed. To provide clues about adaptive strategies adopted by NTHi during persistent infection, we compared sequential persistent isolates with newly acquired isolates in sputa from six patients with chronic obstructive lung disease. Pulse field gel electrophoresis (PFGE) identified three patients with consecutive persistent strains and three with new strains. Phenotypic characterisation included infection of respiratory epithelial cells, bacterial self-aggregation, biofilm formation and resistance to antimicrobial peptides (AMP). Persistent isolates differed from new strains in showing low epithelial adhesion and inability to form biofilms when grown under continuous-flow culture conditions in microfermenters. Self-aggregation clustered the strains by patient, not by persistence. Increasing resistance to AMPs was observed for each series of persistent isolates; this was not associated with lipooligosaccharide decoration with phosphorylcholine or with lipid A acylation. Variation was further analyzed for the series of three persistent isolates recovered from patient 1. These isolates displayed comparable growth rate, natural transformation frequency and murine pulmonary infection. Genome sequencing of these three isolates revealed sequential acquisition of single-nucleotide variants in the AMP permease sapC, the heme acquisition systems hgpB, hgpC, hup and hxuC, the 3-deoxy-D-manno-octulosonic acid kinase kdkA, the long-chain fatty acid transporter ompP1, and the phosphoribosylamine glycine ligase purD. Collectively, we frame a range of pathogenic traits and a repertoire of genetic variants in the context of persistent infection by NTHi.
Resumo:
The exopolysaccharides with characteristics of gel produced by Rhizobium tropici (EPS RT) and Mesorhizobium sp (EPS MR) are acidic heteropolysaccharide composed mainly of glucose and galactose in a molar ratio of 4:1 and 5:1 respectively, with traces of mannose (~ 1%). Chemical analysis showed the presence of uronic acid, pyruvate and acetyl-substituents in the structures of both polymers. Experiments of gel permeation chromatography and polyacrylamide gel electrophoresis showed that EPS RT and EPS MR are homogeneous molecules with low grade of polydispersity. The EPS were characterized using spectroscopic techniques of FT-IR, ¹H and 13C-NMR.
Resumo:
Viroids, non-protein-coding small (246-401 nt) circular single-stranded RNAs with autonomous replication, are currently classified into two families. Within the family Pospiviroidae, Citrus exocortis viroid (CEVd) belongs to the genus Pospiviroid while Hop stunt viroid (HSVd) is the single member of the genus Hostuviroid. These pathogens are distributed worldwide and infect a large number of hosts. In Brazil, isolates of CEVd and HSVd have been detected in both citrus and grapevine. To characterize and study the genetic variability of these viroids, total RNA from leaves of grapevine Vitis vinifera 'Cabernet Sauvignon' and V. labrusca 'Niagara Rosada' from Bento Gonçalves, RS, was used as a template for RT-PCR amplification with specific primers for the five viroids described infecting grapevines [HSVd, CEVd, Grapevine yellow speckle viroid 1 (GYSVd-1), Grapevine yellow speckle viroid 2 (GYSVd-2) and Australian grapevine viroid (AGVd)]. Leaf samples of Citrus medica infected with CEVd from São Paulo were also analyzed. The resulting products were separated by agarose gel electrophoresis and DNA fragments of the expected size were eluted, cloned and sequenced. The grapevine samples analyzed were doubly infected by CEVd and HSVd. A phylogenetic analysis showed that the Brazilian grapevine HSVd variants clustered with other grapevine HSVd variants, forming a specific group separated from citrus variants, whereas the Brazilian CEVd variants clustered with other citrus and grapevine variants.
Resumo:
Evolution of Bordetella pertussis post vaccination Whooping cough or pertussis is caused by the gram-negative bacterium Bordetella pertussis. It is a highly contiguous disease in the human respiratory tract. Characteristic of pertussis is a paroxysmal cough with whooping sound during gasps of breath after coughing episodes. It is potentially fatal to unvaccinated infants. The best approach to fight pertussis is to vaccinate. Vaccinations against pertussis have been available from the 1940s. Traditionally vaccines were whole-cell pertussis (wP) preparations as part of the combined diphtheria-tetanus-pertussis (DTP) vaccines. More recently acellular pertussis (aP) vaccines have replaced the wP vaccines in many countries. The aP vaccines are less reactogenic and can also be administered to school children and adults. There are several publications reporting variation in the i>B. pertussis virulence factors that are also aP vaccine antigens. This has occurred in the genes coding for pertussis toxin and pertactin about 15 to 30 years after the introduction of pertussis vaccines to immunisation programs. Resurgence of pertussis has also been reported in many countries with high vaccination coverage. In this study the evolution of B. pertussis was investigated in Finland, the United Kingdom, Poland, Serbia, China, Senegal and Kenya. These represent countries with a long history of high vaccination coverage with stable vaccines or changes in the vaccine formulation; countries which established high vaccination coverage late; and countries where vaccinations against pertussis were started late. With bacterial cytotoxicity and cytokine measurements, comparative genomic hybridisation, pulsed-field gel electrophoresis (PFGE), genotyping and serotyping it was found that changes in the vaccine composition can postpone the emergence of antigenic variants. It seems that the change in PFGE profiles and the loss of genetic material in the genome of B. pertussis are similar in most countries and the vaccine-induced immunity is selecting non-vaccine type strains. However, the differences in the formulation of the vaccines, the vaccination programs and in the coverage of pertussis vaccination have affected the speed and timing of these changes.
Resumo:
Winter dysentery (WD) is a seasonal infectious disease described worldwide that causes a marked decrease in milk production in dairy cows. In the Northern hemisphere, where the disease is classically recognized, bovine coronavirus (BCoV) has been assigned as a major etiologic agent of the disease. Nonetheless, in the Southern hemisphere, an in-deep etiological survey on WD cases had not been carried out. This study aimed to survey for BCoV by nested-RT-PCR, rotavirus by polyacrylamide gel electrophoresis (PAGE) and ELISA, bacteria by classical bacteriological methods and PCR for virulence factors and parasites by sugar flotation test on fecal samples of 21 cows from a farm during an outbreak of WD in São Paulo state, Southeastern Brazil. BCoV was detected in all 21 samples, while rotavirus was detected in two symptomatic cows. Escherichia coli, Yersinia intermedia, Providencia rustigianii Proteus penneri, Klebsiella terrigena and Enterobacter aglomerans were detected in samples from both asymptomatic and healthy cows in different associations. The study of E. coli virulence factors revealed that the strains isolated were all apathogenic. Cysts of Eimeria sp. and eggs of Strongyloidea were detected at low numbers in four of the symptomatic cows, with one co-infestation. These results suggest BCoV as the main etiologic agent of the cases of WD in Brazil, a conclusion that, with the clinical and epidemiological patterns of the disease studied herein, match those already described elsewhere. These findings give basis to the development of preventive measures and contribute to the understanding of the etiology of WD.
Resumo:
The aim of this study was to evaluate serum protein concentrations in calves experimentally inoculated with Salmonella Dublin. Twelve healthy 10 to 15-day-old Holstein calves were randomly allotted into two groups, control and infected with 10(8) CFU of Salmonella Dublin orally. The calves were subjected to physical evaluation and blood samples were collected shortly before administration of the bacteria and also 24, 48, 72, 96, 120 and 168 hours post-infection. The concentration of serum proteins was determined through sodium dodecyl sulphate-polyacrylamide gel electrophoresis (SDS-PAGE). Thirty serum proteins ranging from molecular weight of 24,000 Da to molecular weight of 236,000 Da were detected. Serum concentrations of ceruloplasmin (125,000 Da), haptoglobin (45,000 Da), acid glycoprotein (40,000 Da) and a 34,000 Da protein were significantly increased in the experimentally infected calves, when compared with their concentrations in the control animals. Therefore, this study showed that S. Dublin infection could lead to the increase of certain serum proteins in calves.
Resumo:
Rotavirus is an important cause of neonatal diarrhea in humans and several animal species, including calves. A study was conducted to examine 792 fecal samples collected from calves among 65 dairy and beef herds distributed in two of Brazil's major livestock producing regions, aiming to detect the occurrence of rotavirus and perform a molecular characterization of the rotavirus according to G and P genotypes in these regions. A total of 40 (5.05%) samples tested positive for rotavirus by the polyacrylamide gel electrophoresis (PAGE) technique. The molecular characterization was performed by multiplex semi-nested RT-PCR reactions, which indicated that the associations of genotypes circulating in herds in Brazil's southeastern region were G6P[11], G10P[11], G[-]P[5] + [11], G[-]P[6] in the state of São Paulo and G6P[11], G8P[5], G11P[11], G10P[11] in the state of Minas Gerais. In the central-western region, the genotypes G6P[5] + [11], G6P[5], G8P[-], G6P[11], G [-] P[1], G[-] P[11], and G[-] P[5] were detected in the state of Goiás, while the genotypes G6P[5], G8[P11], G6[P11], G8[P1], G8[P5], G6[P1] were circulating in herds in the state of Mato Grosso do Sul. The genotypic diversity of bovine rotavirus found in each region under study underlines the importance of characterizing the circulating samples in order to devise the most effective prophylactic measures.
Resumo:
The objectives of this study were to isolate Klebsiella pneumoniae from different sources in three dairy cattle herds, to use the pulsed-field gel electrophoresis (PFGE) to measure genotypic similarities between isolates within a dairy herd, to verify the production of extended-spectrum β-lactamases (ESBLs) by the double-disk synergy test (DDST), and to use the PCR to detect the main ESBLs subgroups genes. Three dairy farms were selected based on previous mastitis outbreaks caused by K. pneumoniae. Milk samples were collected from lactating cows and from the bulk tank. Swabs were performed in different locations, including milking parlors, waiting room, soil, animal's hind limbs and rectum. K. pneumoniae was isolated from 27 cases of intramammary infections (IMI) and from 41 swabs. For farm A isolates from IMI and bulk tank were considered of the same PGFE subtype. One isolate from a bulk tank, three from IMI cases and four from environmental samples were positive in the DDST test. All eight DDST positive isolates harbored the bla shv gene, one harbored the bla tem gene, and three harbored the bla ctx-m gene, including the bulk tank isolate. Our study confirms that ESBL producing bacteria is present in different locations in dairy farms, and may be responsible for IMI. The detection of ESBLs on dairy herds could be a major concern for both public and animal health.
Resumo:
Porcine group A rotavirus (PoRVA) is a major cause of neonatal diarrhea in suckling and recently weaned piglets worldwide. The involvement of non-group A rotavirus in cases of neonatal diarrhea in piglets are sporadic. In Brazil there are no reports of the porcine rotavirus group C (PoRVC) as etiologic agent of the diarrhea outbreaks in piglets. The aim of this study was to describe the identification of rotavirus group C in single and in mixed infection with rotavirus groups A and B in three neonatal diarrhea outbreaks in suckling (<21-day-old) piglets, with 70% to 80% and 20% to 25% of morbidity and lethality rates, respectively, in three pig herds located in the state of Santa Catarina, Brazil. The diagnosis of PoRV in the diarrheic fecal samples was performed using polyacrylamide gel electrophoresis (PAGE) to identify the presence of porcine rotavirus groups A, B (PoRVB), and C, and by RT-PCR (PoRVA and PoRVC) and semi-nested (SN)-PCR (PoRVB) to partially amplify the VP4 (VP8*)-VP7, NSP2, and VP6 genes of PoRVA, PoRVB, and PoRVC, respectively. One RT-PCR (PoRVA and PoRVC) and SN-PCR (PoRVB) product of each group of rotavirus of each diarrhea outbreak was submitted to nucleotide (nt) sequence analysis. Based on the PAGE technique, 4 (25%) and 1 (6.25%) of the 16 diarrheic fecal samples evaluated in the first outbreak presented PoRVA and PoRVC electropherotype, respectively, and 11 (68.75%) were negative. In the second outbreak, 3 (42.85%) of the 7 fecal samples evaluated presented PoRVA electropherotype, and in 3 (42.85%) and in 1 (14.3%) fecal samples were detected inconclusive and negative results, respectively. Three (30%) of the 10 fecal samples of the third outbreak presented PoRVC electropherotype; 5 (50%) and 2 (20%) samples showed negative and inconclusive results, respectively. Based on the RT-PCR and SN-PCR assays in the first neonatal diarrhea outbreak, PoRVC was detected in 13 (81.2%) of the 16 diarrheic fecal samples evaluated. PoRVC single infection was identified in 4 (25%) of these samples and mixed infections with PoRVA and PoRVB in 9 (56.2%) fecal samples. All of the seven diarrheic fecal samples evaluated from the second neonatal diarrhea outbreak were positive for PoRVC, whereas its mixed infection with other PoRV groups was detected in 4 (57.2%) samples. In the third outbreak, PoRVC in single infection was detected in all of the 10 diarrheic fecal samples analyzed. In the nt sequence analysis, the PoRVA strains of the first and second outbreaks demonstrated higher nt identity with G4P[6] and G9P[23] genotypes, respectively. The PoRVB strains (first and second outbreaks) and the PoRVC strains (first, second, and third outbreaks) showed higher nt identity and clustered in the phylogenetic tree with PoRVB and PoRVC strains that belong to the N4 and I1 genotypes, respectively. This is the first description in Brazil of the involvement of PoRVC in the etiology of diarrhea outbreaks in suckling piglets. The results of this study demonstrated that PoRVC, in both single and mixed infections, is an important enteropathogen involved in neonatal diarrhea outbreaks in piglets and that the use of more sensitive diagnostic techniques allows the identification of mixed infections involving two or even three groups of PoRV, which may be more common than previously reported.
Resumo:
The episodes of diarrhea caused by neonatal bovine rotavirus group A (BoRVA) constitute one of the major health problems in the calf rearing worldwide. The main G (VP7) and P (VP4) genotypes of BoRVA strains involved in the etiology of diarrhea in calves are G6P[1], G10P[11], G6P[5], and G8P[1]. However, less frequently, other G and P genotypes have been described in BoRVA strains identified in diarrheic fecal samples of calves. This study describes the identification and molecular characterization of an emerging genotype (G6P[11]) in BoRVA strains involved in the etiology of a diarrhea outbreak in beef calves in a cattle herd of high production in extensive management system. The diarrhea outbreak, which showed high morbidity (60%) and lethality (7%) rates, occurred in calves (n= 384) Nelore (Bos indicus) up to 30-day-old from the State of Mato Grosso do Sul, Brazil. BoRVA was identified in 80% (16/20) of the fecal samples analyzed by polyacrylamide gel electrophoresis (PAGE) technique. In all PAGE-positive fecal samples were amplified products with 1,062-bp and 876-bp in the RT-PCR assays for VP7 (G type) and VP4 (VP8*) (P type) of BoRVA, respectively. The nucleotide sequence analysis of VP7 and VP4 genes of four wild-type BoRVA strains showed G6-III P[11]-III genotype/lineage. The G6P[11] genotype has been described in RVA strains of human and animal hosts, however, in calves this genotype was only identified in some cross-sectional studies and not as a single cause of diarrhea outbreaks in calves with high morbidity and lethality rates as described in this study. The monitoring of the G and P genotypes of BoRVA strains involved in diarrhea outbreaks in calves is important for both animal and public health by allowing the identification of the most frequent genotypes, the characterization of novel genotypes and to identify reassortments with genotypes described in animal and human hosts. The results of this study show the importance of the monitoring of the genotypes of BoRVA strains involved in episodes of bovine neonatal diarrhea as for characterization of frequency of occurrence and pathogenic potential of uncommon genotypes as for monitoring of the emergency of different BoRVA genotypes not included in commercial vaccines.
Resumo:
The study aimed to identify potential biomarkers of mammary gland infection in Santa Inês sheep. Commercial flocks of sheep provided the same hygiene, sanitary, and nutritional management under semi-intensive production systems were monitored during the lactation stage-and assessed 15, 30, 60, and 90 days after delivery (through the end of lactation and weaning). The California Mastitis Test (CMT) was performed on the mammary glands. Milk was collected for bacterial examination and protein analysis. Bacterial culture and biochemical characterization of the samples were performed. Forty-two milk samples from healthy glands (negative CMT and bacterial testing) and 43 milk samples from infected glands (positive CMT and bacterial testing) taken at the predefined time points were assessed. A rennin solution was used to obtain the whey. The proteins analysis was performed using sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE), which allowed for the quantification of nine whey proteins produced in healthy glands: serum albumin, lactoferrin, IgA, IgG heavy-chain (IgG HC), IgG light-chain (IgG LC), total IgG (IgG HC + IgG LC), α-lactalbumin, β-lactoglobulin, protein with MW 15.000 Da, protein with MW 29.000 Da and eleven whey proteins secreted by infected glands, including haptoglobin and α-1-acid glycoprotein. A comparison of whey proteins between healthy and infected glands showed increases (P<0.05) in the secreted and total contents of all proteins, except for IgG LC and α-lactoalbumin. The most significant changes were observed in α-1-acid glycoprotein, lactoferrin and haptoglobin, which showed three-, five-, and seven-fold increases in secretion, respectively. This study showed that haptoglobin, α-1-acid glycoprotein, lactoferrin, albumin, and the IgA and IgG immunoglobulins may serve as potential biomarkers for mammary gland infection in sheep.
Resumo:
A spatial autocorrelation study of enzyme loci detected by starch gel electrophoresis was performed to verify the occurrence of spatial genetic structure within two natural populations of Machaerium villosum Vog. The sampled populations were termed "Antropic Model (MA)" and "Natural Model (MN)" and they are situated in Campininha Farm areas, at Moji-Guaçu municipality, 22°10'43''-22°18'19'' S and 47°8'5"-47°11'34" W, in the state of São Paulo. Ten polymorphic loci in the MA population and nine polymorphic loci in the MN population were assessed by Moran's I autocorrelation statistic. No spatial autocorrelation was detected among individuals within sampled populations. Results are in line with other studies in woody species from tropical rain forest.
Resumo:
Leaves and fruits from 63 Stryphnodendron adstringens trees were sampled in the Rio Preto State Park to analyze allozyme segregation, tissue specific expression of allozyme loci, and their genetic parameters. The enzyme systems ADH, EST, ACP, PGM, PGI, GDH, G6PDH, GOT, IDH, LAP, MDH, PER and SKDH were assessed by means of starch-gel electrophoresis. The polymorphic systems PGI, IDH, MDH and GOT demonstrated a dimeric quaternary structure, while EST and PER were monomeric. The total expected genetic diversity (H E) for leaves and seeds were 0.325 and 0.244 respectively. The effective number of alleles per locus (A E) was 1.58 in leaves and 1.42 in seeds. The values of H E and A E observed in S. adstringens were comparatively higher than the average values seen in allozyme studies of other woody plants. The values of the fixation indices for the population, considering leaves (f = 0.070) and seeds (f = 0.107), were not significant. The high values of genetic diversity and of effective number of alleles per locus, as well as the non-significant fixation index and the adjustments of the Hardy-Weinberg proportions between generations for the pgi-1, mdh-2 and idh-1 loci, indicated random mating in this population. The enzyme systems EST and PER demonstrated their best resolution in leaf tissues, while the MDH, IDH, PGI and GOT systems demonstrated their best resolution in seed tissues.
Resumo:
The genetic variability of the "curimba", Prochilodus lineatus, from three locations in the Paraná river basin, was investigated by starch gel electrophoresis. A total of 160 specimens were analyzed for 19 enzymes, 12 of which permitted successful interpretation of electrophoretic patterns. Eighteen loci were identified and six of them proved to be polymorphic (EST-1*, EST-2*, IDH-1*, PGM-1*, PGM-2*, LDH-2*). Mean heterozygosity was considered high (13%) by comparison with the literature. A low level of differentiation was found among subpopulations, with mean F ST = 0.018. Values of genetic distance and genetic identity suggest that, at least along this stretch of the river, P. lineatus comprises a single breed with high gene flow. This analysis has important implications for fishery management, aquaculture, and conservation of the stocks