902 resultados para DEEPLY INFILTRATING ENDOMETRIOSIS
Resumo:
Background : Numerous studies have shown that immune cells infiltrate the spinal cord after peripheral nerve injury and that they play a major contribution to sensory hypersensitivity in rodents. In particular, the role of monocyte-derived cells and T lymphocytes seems to be prominent in this process. This exciting new perspective in research on neuropathic pain opens many different areas of work, including the understanding of the function of these cells and how they impact on neural function. However, no systematic description of the time course or cell types that characterize this infiltration has been published yet, although this seems to be the rational first step of an overall understanding of the phenomenon. Objective : Describe the time course and cell characteristics of T lymphocyte infiltration in the spinal cord in the Spared Nerve Injury (SNI) model of neuropathic pain in rats. Methods : Collect of lumbar spinal cords of rats at days 2, 7, 21 and 40 after SNI or sham operation (n=4). Immunofluorescence detecting different proteins of T cell subgroups (CD2+CD4+, CD2+CD8+, Th1 markers, Th2 markers, Th17 markers). Quantification of the infiltration rate of the different subgroups. Expected results : First, we expect to see an infiltration of T cells in the spinal cord ipsilateral to nerve injury, higher in SNI rats than in sham animals. Second, we anticipate that different subtypes of T cells penetrate at different time points. Finally, the number of T lymphocytes are expected to decrease at the latest time point, showing a resolution of the process underlying their infiltrating the spinal cord in the first place. Impact : A systematic description of the infiltration of T cells in the spinal cord after peripheral nerve injury is needed to have a better understanding of the role of immune cells in neuropathic pain. The time course that we want to establish will provide the scientific community with new perspectives. First, it will confirm that T cells do indeed infiltrate the spinal cord after SNI in rats. Second, the type of T cells infiltrating at different time points will give clues about their function, in particular their inflammatory or anti-inflammatory profile. From there on, other studies could be lead, investigating the functional side of the specific subtypes put to light by us. Ultimately, this could lead to the discovery of new drugs targeting T cells or their infiltration, in the hope of improving neuropathic pain.
Resumo:
The objective of this report is to provide Iowa county engineers and highway maintenance personnel with procedures that will allow them to efficiently and effectively interpret and repair or avoid landslides. The research provides an overview of basic slope stability analyses that can be used to diagnose the cause and effect associated with a slope failure. Field evidence for identifying active or potential slope stability problems is outlined. A survey of county engineers provided data for presenting a slope stability risk map for the state of Iowa. Areas of high risk are along the western border and southeastern portion of the state. These regions contain deep to moderately deep loess. The central portion of the state is a low risk area where the surficial soils are glacial till or thin loess over till. In this region, the landslides appear to occur predominately in backslopes along deeply incised major rivers, such as the Des Moines River, or in foreslopes. The south-central portion of the state is an area of medium risk where failures are associated with steep backslopes and improperly compacted foreslopes. Soil shear strength data compiled from the Iowa DOT and consulting engineers files are correlated with geologic parent materials and mean values of shear strength parameters and unit weights were computed for glacial till, friable loess, plastic loess and local alluvium. Statistical tests demonstrate that friction angles and unit weights differ significantly but in some cases effective stress cohesion intercept and undrained shear strength data do not. Moreover, effective stress cohesion intercept and undrained shear strength data show a high degree of variability. The shear strength and unit weight data are used in slope stability analyses for both drained and undrained conditions to generate curves that can be used for a preliminary evaluation of the relative stability of slopes within the four materials. Reconnaissance trips to over fifty active and repaired landslides in Iowa suggest that, in general, landslides in Iowa are relatively shallow [i.e., failure surfaces less than 6 ft (2 m) deep] and are either translational or shallow rational. Two foreslope and two backslope failure case histories provide additional insights into slope stability problems and repair in Iowa. These include the observation that embankment soils compacted to less than 95% relative density show a marked strength decrease from soils at or above that density. Foreslopes constructed of soils derived from shale exhibit loss of strength as a result of weathering. In some situations, multiple causes of instability can be discerned from back analyses with the slope stability program XSTABL. In areas where the stratigraphy consists of loess over till or till over bedrock, the geologic contracts act as surfaces of groundwater accumulation that contribute to slope instability.
Resumo:
Aim Background The expected benefit of transvaginal specimen extraction is reduced incision-related morbidity. Objectives A systematic review of transvaginal specimen extraction in colorectal surgery was carried out to assess this expectation. Method Search strategy The following keywords, in various combinations, were searched: NOSE (natural orifices specimen extraction), colorectal, colon surgery, transvaginal, right hemicolectomy, left hemicolectomy, low anterior resection, sigmoidectomy, ileocaecal resection, proctocolectomy, colon cancer, sigmoid diverticulitis and inflammatory bowel diseases. Selection criteria Selection criteria included large bowel resection with transvaginal specimen extraction, laparoscopic approach, human studies and English language. Exclusion criteria were experimental studies and laparotomic approach or local excision. All articles published up to February 2011 were included. Results Twenty-three articles (including a total of 130 patients) fulfilled the search criteria. The primary diagnosis was colorectal cancer in 51% (67) of patients, endometriosis in 46% (60) of patients and other conditions in the remaining patients. A concurrent gynaecological procedure was performed in 17% (22) of patients. One case of conversion to laparotomy was reported. In two patients, transvaginal extraction failed. In left- and right-sided resections, the rate of severe complications was 3.7% and 2%, respectively. Two significant complications, one of pelvic seroma and one of rectovaginal fistula, were likely to have been related to transvaginal extraction. The degree of follow up was specified in only one study. Harvested nodes and negative margins were adequate and reported in 70% of oncological cases. Conclusion Vaginal extraction of a colorectal surgery specimen shows potential benefit, particularly when associated with a gynaecological procedure. Data from prospective randomized trials are needed to support the routine use of this technique.
Resumo:
BACKGROUND: The goal of this study was to characterize the performance of fluorine-19 ((19)F) cardiac magnetic resonance (CMR) for the specific detection of inflammatory cells in a mouse model of myocarditis. Intravenously administered perfluorocarbons are taken up by infiltrating inflammatory cells and can be detected by (19)F-CMR. (19)F-labeled cells should, therefore, generate an exclusive signal at the inflamed regions within the myocardium. METHODS AND RESULTS: Experimental autoimmune myocarditis was induced in BALB/c mice. After intravenous injection of 2×200 µL of a perfluorocarbon on day 19 and 20 (n=9) after immunization, in vivo (19)F-CMR was performed at the peak of myocardial inflammation (day 21). In 5 additional animals, perfluorocarbon combined with FITC (fluorescein isothiocyanate) was administered for postmortem immunofluorescence and flow-cytometry analyses. Control experiments were performed in 9 animals. In vivo (19)F-CMR detected myocardial inflammation in all experimental autoimmune myocarditis-positive animals. Its resolution was sufficient to identify even small inflammatory foci, that is, at the surface of the right ventricle. Postmortem immunohistochemistry and flow cytometry confirmed the presence of perfluorocarbon in macrophages, dendritic cells, and granulocytes, but not in lymphocytes. The myocardial volume of elevated (19)F signal (rs=0.96; P<0.001), the (19)F signal-to-noise ratio (rs=0.92; P<0.001), and the (19)F signal integral (rs=0.96; P<0.001) at day 21 correlated with the histological myocarditis severity score. CONCLUSIONS: In vivo (19)F-CMR was successfully used to visualize the inflammation specifically and robustly in experimental autoimmune myocarditis, and thus allowed for an unprecedented insight into the involvement of inflammatory cells in the disease process.
Resumo:
BACKGROUND: The CD28 homologue programmed death-1 (PD-1) and its ligands, PD-L1 and PD-L2 (which are homologous to B7), constitute an inhibitory pathway of T cell costimulation. The PD-1 pathway is of interest for immune-mediated diseases given that PD-1-deficient mice develop autoimmune diseases. We have evaluated the effect of local overexpression of a PD-L1.Ig fusion protein on cardiac allograft survival. METHODS: Adenovirus-mediated PD-L1.Ig gene transfer was performed in F344 rat donor hearts placed in the abdominal position in Lewis recipients. Inflammatory cell infiltrates in the grafts were assessed by immunohistochemistry. RESULTS: Allografts transduced with the PD-L1.Ig gene survived for longer periods of time compared with those receiving noncoding adenovirus or virus dilution buffer alone: median survival time (MST), 17 (range: 16-20) days vs. 11 (8-14) and 9 (8-13) days, respectively (P < 0.001). PD-L1.Ig gene transfer combined with a subtherapeutic regimen of cyclosporin A (CsA) was superior to CsA alone: MST, 25 (15-42) vs. 15 (13-19) days (P < 0.05). PD-L1.Ig gene transfer was associated with decreased numbers of CD4 cells and monocytes/macrophages infiltrating the graft (P < 0.05). CONCLUSIONS: Localized PD-L1.Ig expression in donor hearts attenuates acute allograft rejection in a rat model. The effect is additive to that of a subtherapeutic regimen of CsA. These results suggest that targeting of PD-1 by gene therapy may inhibit acute cardiac allograft rejection in vivo.
Resumo:
Extrafloral nectaries (EFNs) are structurally variable and widely spread among the angiosperms. The occurrence of EFNs in leaves of Pterodon polygalaeflorus Benth. and Pterodon pubescens Benth. (Fabaceae: Papilionoideae) were detected in adult specimens, at the time of production of new buds and flowers. The goals of the present study are to register the occurrence of the EFNs in P. pubescens and P. polygalaeflorus, and provide comparative data on the anatomical structures. The EFNs occur in the rachis and are located under the insertion of each petiolule. Each nectary consists of a small elevation whose apical portion is deeply invaginated, resulting in a depression (secretory pole), a common characteristic of both species. Unicellular, nonglandular trichomes occur along the rachis, being less numerous in P. polygalaeflorus while in P. pubescens they cover the EFNs. The secretory tissue consists of parenchyma cells with dense cytoplasm compactly arranged. The nectar reaches the surface of the EFNs by rupturing the thin cuticle which covers the secretory pole, since both species lack stomata or any other interruption at the epidermis. The basic difference between the two species, in relation to the EFNs, is the density of the pubescence, which is always greater in P. pubescens. Structural and dimensional modifications may be observed, even between basal and apical nectaries in the same rachis, so it does not constitute a taxonomical tool.
Resumo:
The genus Artemisia is one of the largest of the Asteraceae family, with more than 500 species. It is widely distributed mainly across the Northern Hemisphere, being profusely represented in the Old World, with a great centre of diversification in Asia, and also reaching the New World. The evolution of this genus has been deeply studied using different approaches, and polyploidy has been found to perform an important role leading to speciation processes. Karyological, molecular cytogenetic and phylogenetic data have been compiled in the present review to provide a genomic characterization throughout some complexes within the genus.
Resumo:
Metastatic growth in distant organs is the major cause of cancer mortality. The development of metastasis is a multistage process with several rate-limiting steps. Although dissemination of tumour cells seems to be an early and frequent event, the successful initiation of metastatic growth, a process termed 'metastatic colonization', is inefficient for many cancer types and is accomplished only by a minority of cancer cells that reach distant sites. Prevalent target sites are characteristic of many tumour entities, suggesting that inadequate support by distant tissues contributes to the inefficiency of the metastatic process. Here we show that a small population of cancer stem cells is critical for metastatic colonization, that is, the initial expansion of cancer cells at the secondary site, and that stromal niche signals are crucial to this expansion process. We find that periostin (POSTN), a component of the extracellular matrix, is expressed by fibroblasts in the normal tissue and in the stroma of the primary tumour. Infiltrating tumour cells need to induce stromal POSTN expression in the secondary target organ (in this case lung) to initiate colonization. POSTN is required to allow cancer stem cell maintenance, and blocking its function prevents metastasis. POSTN recruits Wnt ligands and thereby increases Wnt signalling in cancer stem cells. We suggest that the education of stromal cells by infiltrating tumour cells is an important step in metastatic colonization and that preventing de novo niche formation may be a novel strategy for the treatment of metastatic disease.
Resumo:
In the last two decades, anti-cancer vaccines have yielded disappointing clinical results despite the fact that high numbers of self/tumor-specific T cells can be elicited in immunized patients. Understanding the reasons behind this lack of efficacy is critical in order to design better treatment regimes. Recombinant lentivectors (rLVs) have been successfully used to induce antigen-specific T cells to foreign or mutated tumor antigens. Here, we show that rLV expressing a murine nonmutated self/tumor antigen efficiently primes large numbers of self/tumor-specific CD8(+) T cells. In spite of the large number of tumor-specific T cells, however, no anti-tumor activity could be measured in a therapeutic setting, in mice vaccinated with rLV. Accumulating evidence shows that, in the presence of malignancies, inhibition of T-cell activity may predominate overstimulation. Analysis of tumor-infiltrating lymphocytes revealed that specific anti-tumor CD8(+) T cells fail to produce cytokines and express high levels of inhibitory receptors such as programmed death (PD)-1. Association of active immunization with chemotherapy or antibodies that block inhibitory pathways often leads to better anti-tumor effects. We show here that combining rLV vaccination with either cyclophosphamide or PD-1 and PD-L1 blocking antibodies enhances rLV vaccination efficacy and improves anti-tumor immunity.
Resumo:
SUMMARY Radiotherapy is commonly and efficiently used to treat solid cancer in the clinic. Experimental evidence however suggests that radiation can promote tumor progression by inducing chronic modifications of the tumor microenvironment. Clinically, these observations are highly relevant to aggressive tumoral lesions relapsing after radiation therapy, a leading cause of patients' death. The investigation and understanding of the biological mechanisms implicated in the malignant progression of post-radiation relapses are therefore of major importance. Here we used a syngeneic (immunocompetent) breast cancer orthotopic xenograft model, to show that local irradiation of the mammary gland promotes the appearance of an invasive and metastatic tumor phenotype. Previous studies in our laboratory revealed that inhibition of tumor-induced angiogenesis and consequent increase in tumor hypoxia promotes metastasis formation through the activation of pro-invasive programs in the tumor cells. Our results extend these observations suggesting that mammary gland irradiation induces the recruitment of CD11b+ cells to both the primary tumor and the lungs at pre-metastatic stages through the hypoxia-dependent induction of Kit-ligand (KITL) expression in primary tumors. Abrogation of KITL expression in tumor cells prevented CD11 b+ cells accumulation in both the primary tumor and lungs and significantly reduced metastases of tumors growing in irradiated mammary gland. Importantly, irradiated mammary gland enhanced tumor-induced mobilization of circulating CD11b+cKit+ myelomonocytic cells through a HIF1- and KITL-dependent process. By cell transfer experiments, mobilized circulating CD11b+cKit+ cells were shown to supply both tumor- and lungs infiltrating CD11b+ cells. Using a blocking antibody against cKit (the KITL receptor), the mobilization of CD11b+cKit+ ceils was prevented as well as lung metastases derived from tumors growing in irradiated mammary gland. Taken together, these results indicate that tumors growing in a pre-irradiated mammary gland partially promote their malignant progression through the distant mobilization of circulating myelomonocytic precursor cells. They identify KITL inhibition and/or cKit receptor neutralization as potentially promising therapeutic approaches for post-radiation relapses. RESUME La radiothérapie est largement utilisée comme traitement de choix de nombreux types de cancers. L'agressivité des récidives tumorales observée en clinique après radiothérapie suggère cependant que le recours à l'irradiation pourrait dans certains cas accélérer la progression tumorale. De récents travaux expérimentaux ont en effet permis d'appuyer cette hypothèse, en montrant notamment l'effet néfaste des modifications chroniques de l'environnement induites par l'irradiation sur la progression tumorale. A l'aide d'un modèle murin syngénique orthotopique de cancer de sein, nous avons pu montrer que l'irradiation locale de la glande mammaire facilite l'invasion et la dissémination métastatique des cellules tumorales en favorisant le recrutement de cellules myéloïdes CD11 b+ vers la tumeur primaire et les poumons à un stade pré-métastatique. Comme mécanisme impliqué dans le recrutement des cellules CD11b+, nous avons pu observer après irradiation locale de la glande mammaire une expression augmentée de Kit-ligand (KITL) dans la tumeur (induite par l'hypoxie) ainsi que la mobilisation de cellules myéloïdes circulantes exprimant le récepteur cKit et précurseurs des cellules CD11b+ infiltrant la tumeur et les poumons. En empêchant la mobilisation par la tumeur de cellules circulantes cKit+ par des approches à la fois génétique et pharmacologique nous avons pu prévenir l'accumulation de cellules myéloïdes CD11 b+ dans la tumeur primaire et les poumons ainsi que la dissémination métastatique induites par' l'irradiation de la glande mammaire. De façon générale, ces résultats montrent que la progression agressive des tumeurs qui se développent dans un environnement irradié repose à la fois sur l'expression tumorale de KITL et la mobilisation de cellules myéloïdes précurseurs cKit*. Ils auront permis d'identifier KITL et/ou cKit comme des cibles thérapeutiques potentielles intéressantes pour le traitement des récidives tumorales après radiothérapie.
Resumo:
The repair process of damaged tissue involves the coordinated activities of several cell types in response to local and systemic signals. Following acute tissue injury, infiltrating inflammatory cells and resident stem cells orchestrate their activities to restore tissue homeostasis. However, during chronic tissue damage, such as in muscular dystrophies, the inflammatory-cell infiltration and fibroblast activation persists, while the reparative capacity of stem cells (satellite cells) is attenuated. Abnormal dystrophic muscle repair and its end stage, fibrosis, represent the final common pathway of virtually all chronic neurodegenerative muscular diseases. As our understanding of the pathogenesis of muscle fibrosis has progressed, it has become evident that the muscle provides a useful model for the regulation of tissue repair by the local microenvironment, showing interplay among muscle-specific stem cells, inflammatory cells, fibroblasts and extracellular matrix components of the mammalian wound-healing response. This article reviews the emerging findings of the mechanisms that underlie normal versus aberrant muscle-tissue repair.
Resumo:
Treball en què que s'analitza la traducció del castellà al català en l'àmbit oral col·loquial a partir d'un exemple real pràctic (una pel·lícula) per tal de determinar els problemes més comuns d'aquest tipus de traducció i de quina manera s’hi ha d’enfrontar el traductor per aconseguir un producte final satisfactori.
Resumo:
To analyze the effects of triamcinolone intravitreal injection on the wound healing processes after argon laser retinal photocoagulation, wild type C57BL/6J mice, 8-12 weeks old underwent a standard argon laser photocoagulation protocol. After pentobarbital anesthesia and pupil dilatation, argon laser lesions were induced (50microm, 400mW, 0.05s). Two photocoagulation impacts created two disc diameters from the optic nerve in both eyes. The photocoagulated mice were divided into four groups: Group I (n=12), photocoagulation controls, did not receive any intravitreous injection. Group II (n=12), received an intravitreous injection of 1microl of balanced salt solution (BSS). Group III (n=12), received an intravitreous injection of 1microl containing 15microg of triamcinolone acetonide (TAAC) in BSS. Two mice from each of these three groups were sacrificed at 1, 3, 7, 14 days and 2 and 4 months after photocoagulation. Group IV (n=10) received 1.5, 3, 7.5, 15, or 30microg of TAAC and were all sacrificed on day 14. The enucleated eyes were subjected to systematic analysis of the cellular remodeling processes taking place within the laser lesion and its vicinity. To this purpose, specific antibodies against GFAP, von Willebrand factor, F4/80 and KI67 were used for the detection of astrocytes, activated Müller cells, vascular endothelial cells, infiltrating inflammatory cells and actively proliferating cells. TUNEL reaction was also carried out along with nuclear DAPI staining. Temporal and spatial observations of the created photocoagulation lesions demonstrate that 24h following the argon laser beam, a localized and well-delineated affection of the RPE cells and choroid is observed in mice in Groups I and II. The inner retinal layers in these mice eyes are preserved while TUNEL positive (apoptotic) cells are observed at the retinal outer nuclear layer level. At this stage, intense staining with GFAP is associated with activated retinal astrocytes and Müller cells throughout the laser path. From day 3 after photocoagulation, dilated new choroidal capillaries are detected on the edges of the laser lesion. These processes are accompanied by infiltration of inflammatory cells and the presence of proliferating cells within the lesion site. Mice in Group III treated with 15microg/mul of triamcinolone showed a decreased number of infiltrating inflammatory cells and proliferating cells, which was not statistically significant compared to uninjected laser treated controls. The development of new choroidal capillaries on the edges of the laser lesion was also inhibited during the first 2 months after photocoagulation. However, on month 4 the growth of new vessels was observed in these mice treated with TAAC. Mice of Group IV did not show any development of new capillaries even with small doses. After argon laser photocoagulation of the mouse eye, intravitreal injection of triamcinolone markedly influenced the retina and choroid remodeling and healing processes. Triamcinolone is a powerful inhibitor of the formation of neovessels in this model. However, this inhibition is transient. These observations should provide a practical insight for the mode of TAAC use in patients with wet AMD.
Resumo:
The otter shrews are members of the subfamily Potamogalinae within the family Tenrecidae. No description of the ovaries of any member of this subfamily has been published previously. The lesser hedgehog tenrec, Echinops telfairi, is a member of the subfamily Tenrecinae of the same family and, although its ovaries have not been described, other members of this subfamily have been shown to have ovaries with non-antral follicles. Examination of these two species illustrated that non-antral follicles were characteristic of the ovaries of both species, as was clefting and lobulation of the ovaries. Juvenile otter shrews range from those with only small follicles in the cortex to those with 300- to 400-microm follicles similar to those seen in non-pregnant and pregnant adults. As in other species, most of the growth of the oocyte occurred when follicles had one to two layers of granulosa cells. When larger follicles became atretic in the Nimba otter shrew, hypertrophy of the theca interna produced nodules of glandular interstitial tissue. In the tenrec, the hypertrophying theca interna cells in most large follicles appeared to undergo degeneration. Both species had some follicular fluid in the intercellular spaces between the more peripheral granulosa cells. It is suggested that this fluid could aid in separation of the cumulus from the remaining granulosa at ovulation. The protruding follicles in lobules and absence of a tunica albuginea might also facilitate ovulation of non-antral follicles. Ovaries with a thin-absent tunica albuginea and follicles with small-absent antra are widespread within both the Eulipotyphla and in the Afrosoricida, suggesting that such features may represent a primitive condition in ovarian development. Lobulated and deeply crypted ovaries are found in both groups but are not as common in the Eulipotyphla making inclusion of this feature as primitive more speculative.
Resumo:
A recent phase 1 trial has demonstrated that the generation of tumor-reactive T lymphocytes by transfer of specific T-cell receptor (TCR) genes into autologous lymphocytes is feasible. However, compared with results obtained by infusion of tumor-infiltrating lymphocytes, the response rate observed in this first TCR gene therapy trial is low. One strategy that is likely to enhance the success rate of TCR gene therapy is the use of tumor-reactive TCRs with a higher capacity for tumor cell recognition. We therefore sought to develop standardized procedures for the selection of well-expressed, high-affinity, and safe human TCRs. Here we show that TCR surface expression can be improved by modification of TCR alpha and beta sequences and that such improvement has a marked effect on the in vivo function of TCR gene-modified T cells. From a panel of human, melanoma-reactive TCRs we subsequently selected the TCR with the highest affinity. Furthermore, a generally applicable assay was used to assess the lack of alloreactivity of this TCR against a large series of common human leukocyte antigen alleles. The procedures described in this study should be of general value for the selection of well- and stably expressed, high-affinity, and safe human TCRs for subsequent clinical testing.