771 resultados para Cytosolic Na
Resumo:
Antarctic krill (Euphausia superba) from South Georgia comprise one of the most northern and abundant krill stocks. South Georgia waters are undergoing rapid warming, as a result of climate change, which in turn could alter the oxygen concentration of the water. We investigated gene expression in Antarctic krill related to aerobic metabolism, antioxidant defence, and heat-shock response under severe (2.5% O2 saturation or 0.6 kPa) and threshold (20% O2 saturation or 4 kPa) hypoxia exposure compared to in situ levels (normoxic; 100% O2 saturation or 21 kPa). Biochemical metabolic and oxidative stress indicators complemented the genic expression analysis to detect in vivo signs of stress during the hypoxia treatments. Expression levels of the genes citrate synthase (CS), mitochondrial manganese superoxide dismutase (SODMn-m) and one heat-shock protein isoform (E) were higher in euphausiids incubated 6 h at 20% O2 saturation than in animals exposed to control (normoxic) conditions. All biochemical antioxidant defence parameters remained unchanged among treatments. Levels of lipid peroxidation were raised after 6 h of severe hypoxia. Overall, short-term exposure to hypoxia altered mitochondrial metabolic and antioxidant capacity, but did not induce anaerobic metabolism. Antarctic krill are swarming organisms and may experience short periods of hypoxia when present in dense swarms. A future, warmer Southern ocean, where oxygen saturation levels are decreased, may result in smaller, less dense swarms as they act to avoid greater levels of hypoxia.
Resumo:
In the eurythermal cuttlefish Sepia officinalis, performance depends on hearts that ensure systemic oxygen supply over a broad range of temperatures. We therefore aimed to identify adjustments in energetic cardiac capacity and underlying mitochondrial function supporting thermal acclimation and adaptation that could be crucial for the cuttlefish's competitive success in variable environments. Two genetically distinct cuttlefish populations were acclimated to 11, 16 and 21C. Subsequently, skinned and permeabilised heart fibres were used to assess mitochondrial functioning by means of high-resolution respirometry and a substrate-inhibitor protocol, followed by measurements of cardiac citrate synthase and cytosolic enzyme activities. Temperate English Channel cuttlefish had lower mitochondrial capacities but larger hearts than subtropical Adriatic cuttlefish. Warm acclimation to 21C decreased mitochondrial complex I activity in Adriatic cuttlefish and increased complex IV activity in English Channel cuttlefish. However, compensation of mitochondrial capacities did not occur during cold acclimation to 11C. In systemic hearts, the thermal sensitivity of mitochondrial substrate oxidation was high for proline and pyruvate but low for succinate. Oxygen efficiency of catabolism rose as temperature changed from 11 to 21C via shifts to oxygen-conserving oxidation of proline and pyruvate and via reduced relative proton leak. The changes observed for substrate oxidation, mitochondrial complexes, relative proton leak and heart mass improve energetic efficiency and essentially seem to extend tolerance to high temperatures and reduce associated tissue hypoxia. We conclude that cuttlefish sustain cardiac performance and, thus, systemic oxygen delivery over short- and long-term changes of temperature and environmental conditions by multiple adjustments in cellular and mitochondrial energetics.
Resumo:
Marine phytoplankton has developed the remarkable ability to tightly regulate the concentration of free calcium ions in the intracellular cytosol at a level of ~ 0.1 mol /l in the presence of seawater Ca2+ concentrations of 10 mmol/1. The low cytosolic calcium ion concentration is of utmost importance for proper cell signalling function. While the regulatory mechanisms responsible for the tight control of intracellular Ca2+ concentration are not completely understood, phytoplankton taxonomic groups appear to have evolved different strategies, which may affect their ability to cope with changes in seawater Ca2+ concentrations in their environment on geological time scales. For example, the Cretaceous (145 to 66 Ma ago), an era known for the high abundance of coccolithophores and the production of enormous calcium carbonate deposits, exhibited seawater calcium concentrations up to four times present-day levels. We show that calcifying coccolithophore species (Emiliania huxleyi, Gephyrocapsa oceanica and Coccolithus braarudii) are able to maintain their relative fitness (in terms of growth rate and photosynthesis) at simulated Cretaceous seawater calcium concentrations, whereas these rates are severely reduced under these conditions in some non-calcareous phytoplankton species (Chaetoceros sp., Ceratoneis closterium and Heterosigma akashiwo). Most notably, this also applies to a non-calcifying strain of E. huxleyi which displays a calcium-sensitivity similar to the non-calcareous species. We hypothesize that the process of calcification in coccolithophores provides an efficient mechanism to alleviate cellular calcium poisoning and thereby offered a potential key evolutionary advantage, responsible for the proliferation of coccolithophores during times of high seawater calcium concentrations. The exact function of calcification and the reason behind the highly-ornate physical structures of coccoliths remain elusive.
Resumo:
The initial reaction in the pathway leading to the production of indole-3-acetic acid (IAA) in plants is the reaction between chorismate and glutamine to produce anthranilate, catalysed by the enzyme anthranilate synthase (ASA; EC 4.1.3.27). Compared with non-transgenic controls, leaves of transgenic poplar with ectopic expression of the pine cytosolic glutamine synthetase (GS1a; EC 6.3.1.2) produced signicantly greater glutamine and signicantly enhanced ASA a-subunit (ASA1) transcript and protein (approximately 130% and 120% higher than in the untransformed controls, respectively). Similarly, tobacco leaves fed with 30 mM glutamine and 2 mM chorismate showed enhanced ASA1 transcript and protein (175% and 90% higher than controls, respectively). Furthermore, free IAA was signicantly elevated both in leaves of GS1a transgenic poplar and in tobacco leaves fed with 30 mM glutamine and 2 mM chorismate. These results indicated that enhanced cellular glutamine may account for the enhanced growth in GS transgenic poplars through the regulation of auxin biosynthesis
Resumo:
A small heat-shock protein (sHSP) that shows molecular chaperone activity in vitro was recently purified from mature chestnut (Castanea sativa) cotyledons. This protein, renamed here as CsHSP17.5, belongs to cytosolic class I, as revealed by cDNA sequencing and immunoelectron microscopy. Recombinant CsHSP17.5 was overexpressed in Escherichia coli to study its possible function under stress conditions. Upon transfer from 37C to 50C, a temperature known to cause cell autolysis, those cells that accumulated CsHSP17.5 showed improved viability compared with control cultures. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis of cell lysates suggested that such a protective effect in vivo is due to the ability of recombinant sHSP to maintain soluble cytosolic proteins in their native conformation, with little substrate specificity. To test the recent hypothesis that sHSPs may be involved in protection against cold stress, we also studied the viability of recombinant cells at 4C. Unlike the major heat-induced chaperone, GroEL/ES, the chestnut sHSP significantly enhanced cell survivability at this temperature. CsHSP17.5 thus represents an example of a HSP capable of protecting cells against both thermal extremes. Consistent with these findings, high-level induction of homologous transcripts was observed in vegetative tissues of chestnut plantlets exposed to either type of thermal stress but not salt stress
Resumo:
Las plantas son organismos ssiles que han desarrollado la capacidad para detectar variaciones sutiles en su ambiente y producir respuestas adaptativas mediante rutas de sealizacin. Los estmulos causados por el estrs bitico y abitico son numerosos y dependiendo del tiempo de exposicin y su intensidad, pueden reducir la tasa de crecimiento de las plantas y la produccin. Los cambios en la concentracin del calcio citoslico libre constituyen una de las primeras reacciones intracelulares a las situaciones de estrs abitico. En esta situacin, el calcio acta como segundo mensajero y las variaciones en su concentracin son descodificadas por protenas de unin a calcio. Las ms conocidas son las manos-EF y los dominios C2. Los dominios C2 han sido descritos como dominios de unin a lpidos dependientes de calcio. Estos dominios se consideran protenas perifricas solubles en agua que se asocian de manera reversible a los lpidos de la membrana mediante una o dos regiones funcionales: el sitio de unin a calcio y el sitio polibsico. A pesar de que se conoce la estructura molecular de algunos dominios C2, se desconocen aspectos relacionados como las reglas que dirigen su forma de interaccionar con los diferentes fosfolpidos y protenas, la posicin que ocupan en la bicapa lipdica y su papel en la transmisin de seales. En esta tesis se ha estudiado una protena de Arabidopsis thaliana (At3g17980) representativa de una nueva familia de protenas con dominios C2, que consiste nicamente de un dominio C2. Esta protena, llamada AtC2.1, ha sido clonada en el vector pETM11, expresada en E. coli y purificada a homogeneidad en dos pasos cromatogrficos. Se obtuvieron cristales de AtC2.1 de buena calidad mediante tcnicas de difusin de vapor. La protena fue co-cristalizada con calcio, fosfocolina (POC) y el fosfolpido 1,2-dihexanoil-sn-glicero-3-fosfo-L-serina (PSF). Se recogieron ocho conjuntos de datos de difraccin de rayos X empleando radiacin sincrotrn. Los cristales difractaron hasta 1.6 de resolucin. Siete de ellos pertenecan al grupo ortorrmbico P212121, con las dimensiones de la celdilla unidad a = 35.3, b = 88.9, c = 110.6 , y un cristal perteneca al grupo espacial monoclnico C2, con a = 124.84, b = 35.27, c = 92.32 y = 121.70. La estructura se resolvi mediante la tcnica MR-SAD utilizando el cinc como dispersor anmalo. La estructura cristalina mostr que la molcula forma un dmero en el que cada protmero se pliega como un dominio C2 tpico, con la topologa tipo II y presenta una insercin de 43 aminocidos que la diferencia de los dominios C2 conocidos. El mapa de densidad electrnica mostr dos tomos de calcio por protmero. Se resolvieron las estructuras de AtC2.1 en complejo con POC o PSF. En ambos complejos, el anlisis cristalogrfico detect mximos de densidad electrnica en la regin correspondiente al sitio polibsico formado por las hebras 2, 3 5 y el lazo 3. stos se interpretaron correctamente como dos molculas de POC y un tomo de cinc, en un complejo, y como la cabeza polar del PSF en el otro. AtC2.1 define un sitio de interaccin con lpidos dependiente de cinc. En conclusin, en este trabajo se presenta la estructura tridimensional de AtC2.1, miembro representativo de una familia de protenas de Arabidopsis thaliana, identificadas como protenas que interaccionan con los receptores de ABA. Estas protenas estn constituidas nicamente por un dominio C2. El anlisis conjunto de los datos biofsicos y cristalogrficos muestra que AtC2.1 es un sensor de calcio que une lpidos usando dos sitios funcionales. Estos datos sugieren un mecanismo de insercin en membrana dependiente de calcio que trae consigo la disociacin de la estructura dimrica y, por consiguiente, un cambio en las propiedades de superficie de la molcula. Este mecanismo proporciona las bases del reconocimiento y transporte de los receptores de ABA y/o otras molculas a la membrana celular. Plants are sessile organisms that have developed the capacity to detect slight variations of their environment. They are able to perceive biotic and abiotic stress signals and to transduce them by signaling pathways in order to trigger adaptative responses. Stress factors are numerous and, depending on their exposition time and their concentration, can reduce plant growth rate, limiting the productivity of crop plants. Changes in the cytosolic free calcium concentration are observed as one of the earliest intracellular reactions to abiotic stress signals. Calcium plays a key role as a second messenger, and calcium concentration signatures, called calcium signals, are decodified by calcium binding proteins. The main calcium binding structures are the EF-hand motif and the C2 domains. C2 domain is a calcium dependent lipid-binding domain of approximately 130 amino acids. C2 domain displays two functional regions: the Ca-binding region and the polybasic cluster. Both of them can interact with the membrane phospholipids. Despite the number of C2 domain 3D structures currently available, questions about how they interact with the different target phospholipids, their precise spatial position in the lipid bilayer, interactions with other proteins and their role in transmitting signals downstream, have not yet been explored. In this work we have studied an uncharacterized protein from Arabidopsis thaliana (At3g17980) consisting of only a single C2 domain, as member of a new protein C2-domain family. This protein called AtC2.1 was cloned into the pETM11 vector and expressed in E. coli, allowing the purification to homogeneity in two chromatographic steps. Good quality diffracting crystals were obtained using vapor-diffusion techniques. Crystals were co-crystalized with calcium; phosphocholine (POC) and/or the phospholipid 1,2-dihexanoyl-sn-glycero-3-phospho-L-serine (PSF). Eight data set were collected with synchrotron radiation. Crystals diffracted up to 1.6 resolution and seven of them belong to the orthorhombic space group P212121, with unit-cell parameters a = 35.3, b = 88.9, c = 110.6 . Another crystal was monoclinic, space group C2, with a = 124.84, b = 35.27, c = 92.32 and = 121.70. The structural model was solved by MR-SAD using Zn2+ as anomalous scatterer. The crystal structure shows that the molecule is a dimer. Each monomer was folded as a canonical C2 domain with the topology II with a 43 residues insertion. The electron density map reveals two calcium ions per molecule. Structures of AtC2.1, complexed with POC and PSF, have been solved. Well-defined extra electron densities were found, in both complexes, within the concave surface formed by strands 2, 3, 5 and loop 3 of AtC2.1. These densities were clearly explained by the presence of the two POC molecules, one zinc atom and head groups of PSF, occupying the cavity of the polybasic site. AtC2.1 defines a new metal dependent lipid-binding site into the polybasic site. In conclusion, in this thesis it is presented the molecular structure of AtC2.1, a representative member of a family of Arabidopsis thaliana C2 domain proteins, of unknown function, but identified as a molecular interacting unit of the ABA receptors. The joint analyses of the biophysical and crystallographic data show that AtC2.1 is a calcium sensor that binds lipids in two sites and suggest a model of calcium-dependent membrane insertion mechanism that will involve either dimer dissociation or a strong rearrangement of the dimeric structure. This mechanism may be the basis for the recognition and delivery of ABA receptors or other protein molecules to cell membranes.
Resumo:
Las temperaturas extremas, la sequa y otros estreses abiticos limitan la produccin forestal de forma significativa, causando grandes prdidas econmicas en el sector. Los rboles, al ser organismos ssiles, han desarrollado una serie de estrategias para percibir dichos factores, activando respuestas defensivas apropiadas. Entre ellas ocupa un lugar preeminente la sntesis de protenas con actividad chaperona molecular. Las chaperonas moleculares interaccionan con protenas desnaturalizadas total o parcialmente, promoviendo su correcto plegamiento y ensamblaje. Las chaperonas moleculares que se sintetizan de forma predominante en plantas, pero no en otros eucariotas, pertenecen a la familia sHSP (small heat-shock proteins). Se trata de una familia inusualmente compleja y heterognea, cuyos miembros son de pequeo tamao (16-42 kD) y poseen un dominio alfa-cristalina muy conservado. Estas protenas estn implicadas en proteccin frente a estrs abitico mediante la estabilizacin de protenas y membranas, si bien su mecanismo de accin se conoce de forma incompleta. A pesar del evidente potencial aplicado de las protenas sHSP, son muy escasos los estudios realizados hasta el momento con un enfoque netamente biotecnolgico. Por otra parte, casi todos ellos se han llevado a cabo en especies herbceas de inters agronmico o en especies modelo, como Arabidopsis thaliana. De ah que las sHSP de arbreas hayan sido mucho menos caracterizadas estructural y funcionalmente, y ello a pesar del inters econmico y ecolgico de los rboles y de su prolongada exposicin vital a mltiples factores estresantes. La presente Tesis Doctoral se centra en el estudio de sHSP de varias especies arbreas de inters econmico. El escrutinio exhaustivo de genotecas de cDNA de rganos vegetativos nos ha permitido identificar y caracterizar los componentes mayoritarios de tallo en dos especies productoras de madera noble: nogal y cerezo. Tambin hemos caracterizado la familia completa en chopo, a partir de su secuencia genmica completa. Mediante expresin heterloga en bacterias, hemos analizado el efecto protector de estas protenas in vivo frente a distintos tipos de estrs abitico, relevantes para el sector productivo. Los resultados demuestran que las protenas sHSP-CI: (i) aumentan la viabilidad celular de E.coli frente a casi todos estos factores, aplicados de forma individual o combinada; (ii) ejercen un rol estabilizador de las membranas celulares frente a condiciones adversas; (iii) sirven para mejorar la produccin de otras protenas recombinantes de inters comercial. El efecto protector de las protenas sHSP-CI tambin ha sido analizado in planta, mediante la expresin ectpica de CsHSP17.5-CI en chopos. En condiciones normales de crecimiento no se han observado diferencias fenotpicas entre las lneas transgnicas y los controles, lo que demuestra que se pueden sobre-expresar estas protenas sin efectos pleiotrpicos deletreos. En condiciones de estrs trmico, por el contrario, los chopos transgnicos mostraron menos daos y un mejor crecimiento neto. En lnea con lo anterior, las actividades biolgicas de varias enzimas resultaron ms protegidas frente a la inactivacin por calor, corroborando la actividad chaperona propuesta para la familia sHSP y su conexin con la tolerancia al estrs abitico. En lo que respecta a la multiplicacin y propagacin de chopo in vitro, una forma de cultivo que comporta estrs para las plantas, todas las lneas transgnicas se comportaron mejor que los controles en trminos de produccin de biomasa (callos) y regeneracin de brotes, incluso en ausencia de estrs trmico. Tambin se comportaron mejor durante su cultivo ex vitro. Estos resultados tienen gran potencial aplicado, dada la recalcitrancia de muchas especies vegetales de inters econmico a la micropropagacin y a la manipulacin in vitro en general. Los resultados derivados de esta Tesis, aparte de aportar datos nuevos sobre el efecto protector de las protenas sHSP citoslicas mayoritarias (clase CI), demuestran por vez primera que la termotolerancia de los rboles puede ser manipulada racionalmente, incrementando los niveles de sHSP mediante tcnicas de ingeniera gentica. Su inters aplicado es evidente, especialmente en un escenario de calentamiento global. ABSTRACT Abiotic stress produces considerable economic losses in the forest sector, with extreme temperature and drought being amongst the most relevant factors. As sessile organisms, plants have acquired molecular strategies to detect and recognize stressful factors and activate appropriate responses. A wealth of evidence has correlated such responses with the massive induction of proteins belonging to the molecular chaperone family. Molecular chaperones are proteins which interact with incorrectly folded proteins to help them refold to their native state. In contrast to other eukaryotes, the most prominent stress-induced molecular chaperones of plants belong to the sHSP (small Heat Shock Protein) family. sHSPs are a widespread and diverse class of molecular chaperones that range in size from 16 to 42k Da, and whose members have a highly conserved alpha-crystallin domain. sHSP proteins play an important role in abiotic stress tolerance, membrane stabilization and developmental processes. Yet, their mechanism of action remains largely unknown. Despite the applied potential of these proteins, only a few studies have addressed so far the biotechnological implications of this protein family. Most studies have focused on herbaceous species of agronomic interest or on model species such as Arabidopsis thaliana. Hence, sHSP are poorly characterized in long-lived woody species, despite their economic and ecological relevance. This Thesis studies sHSPs from several woody species of economic interest. The most prominent components, namely cytosolic class I sHSPs, have been identified and characterized, either by cDNA library screening (walnut, cherry) or by searching the complete genomic sequence (poplar). Through heterologous bacterial expression, we analyzed the in vivo protective effects of selected components against abiotic stress. Our results demonstrate that sHSP-CI proteins: (i) protect E. coli cells against different stressful conditions, alone or combined; (ii) stabilize cell membranes; (iii) improve the production of other recombinant proteins with commercial interest. The effects of CsHSP17.5-CI overexpression have also been studied in hybrid poplar. Interestingly, the accumulation of this protein does not have any appreciable phenotypic effects under normal growth conditions. However, the transgenic poplar lines showed enhanced net growth and reduced injury under heat-stress conditions compared to vector controls. Biochemical analysis of leaf extracts revealed that important enzyme activities were more protected in such lines against heat-induced inactivation than in control lines, lending further support to the chaperone mode of action proposed for the sHSP family. All transgenic lines showed improved in vitro and ex vitro performance (calli biomass, bud induction, shoot regeneration) compared to controls, even in the absence of thermal stress. Besides providing new insights on the protective role of HSP-CI proteins, our results bolster the notion that heat stress tolerance can be readily manipulated in trees through genetic engineering. The applied value of these results is evident, especially under a global warming scenario.
Resumo:
Inositol polyphosphate 4-phosphatase (4-phosphatase) is an enzyme that catalyses the hydrolysis of the 4-position phosphate from phosphatidylinositol 3,4-bisphosphate [PtdIns(3,4)P2]. In human platelets the formation of this phosphatidylinositol, by the actions of phosphatidylinositol 3-kinase (PI 3-kinase), correlates with irreversible platelet aggregation. We have shown previously that a phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase forms a complex with the p85 subunit of PI 3-kinase. In this study we investigated whether PI 3-kinase also forms a complex with the 4-phosphatase in human platelets. Immunoprecipitates of the p85 subunit of PI 3-kinase from human platelet cytosol contained 4-phosphatase enzyme activity and a 104-kDa polypeptide recognized by specific 4-phosphatase antibodies. Similarly, immunoprecipitates made using 4-phosphatase-specific antibodies contained PI 3-kinase enzyme activity and an 85-kDa polypeptide recognized by antibodies to the p85 adapter subunit of PI 3-kinase. After thrombin activation, the 4-phosphatase translocated to the actin cytoskeleton along with PI 3-kinase in an integrin- and aggregation-dependent manner. The majority of the PI 3-kinase/4-phosphatase complex (75%) remained in the cytosolic fraction. We propose that the complex formed between the two enzymes serves to localize the 4-phosphatase to sites of PtdIns(3,4)P2 production.
Resumo:
The generation of transport vesicles at the endoplasmic reticulum (ER) depends on cytosolic proteins, which, in the form of subcomplexes (Sec23p/Sec24p; Sec13p/Sec31p) are recruited to the ER membrane by GTP-bound Sar1p and form the coat protein complex II (COPII). Using affinity chromatography and two-hybrid analyses, we found that the essential COPII component Sec24p, but not Sec23p, binds to the cis-Golgi syntaxin Sed5p. Sec24p/Sed5p interaction in vitro was not dependent on the presence of [Sar1pGTP]. The binding of Sec24p to Sed5p is specific; none of the other seven yeast syntaxins bound to this COPII component. Whereas the interaction site of Sec23p is within the N-terminal half of the 926-aa-long Sec24p (amino acid residues 56549), Sed5p binds to the N- and C-terminal halves of the protein. Destruction by mutagenesis of a potential zinc finger within the N-terminal half of Sec24p led to a nonfunctional protein that was still able to bind Sec23p and Sed5p. Sec24p/Sed5p binding might be relevant for cargo selection during transport-vesicle formation and/or for vesicle targeting to the cis-Golgi.
Resumo:
In higher plants changes and oscillations in cytosolic free Ca2+ concentration ([Ca2+]i) are central to hormonal physiology, including that of abscisic acid (ABA), which signals conditions of water stress and alters ion channel activities in guard cells of higher-plant leaves. Such changes in [Ca2+]i are thought to encode for cellular responses to different stimuli, but their origins and functions are poorly understood. Because transients and oscillations in membrane voltage also occur in guard cells and are elicited by hormones, including ABA, we suspected a coupling of [Ca2+]i to voltage and its interaction with ABA. We recorded [Ca2+]i by Fura2 fluorescence ratio imaging and photometry while bringing membrane voltage under experimental control with a two-electrode voltage clamp in intact Vicia guard cells. Free-running oscillations between voltages near 50 mV and 200 mV were associated with oscillations in [Ca2+]i, and, under voltage clamp, equivalent membrane hyperpolarizations caused [Ca2+]i to increase, often in excess of 1 M, from resting values near 100 nM. Image analysis showed that the voltage stimulus evoked a wave of high [Ca2+]i that spread centripetally from the peripheral cytoplasm within 510 s and relaxed over 4060 s thereafter. The [Ca2+]i increases showed a voltage threshold near 120 mV and were sensitive to external Ca2+ concentration. Substituting Mn2+ for Ca2+ to quench Fura2 fluorescence showed that membrane hyperpolarization triggered a divalent influx. ABA affected the voltage threshold for the [Ca2+]i rise, its amplitude, and its duration. In turn, membrane voltage determined the ability of ABA to raise [Ca2+]i. These results demonstrate a capacity for voltage to evoke [Ca2+]i increases, they point to a dual interaction with ABA in triggering and propagating [Ca2+]i increases, and they implicate a role for voltage in conditioning [Ca2+]i signals that regulate ion channels for stomatal function.
Resumo:
We have identified a mammalian protein called GIPC (for GAIP interacting protein, C terminus), which has a central PDZ domain and a C-terminal acyl carrier protein (ACP) domain. The PDZ domain of GIPC specifically interacts with RGS-GAIP, a GTPase-activating protein (GAP) for Gi subunits recently localized on clathrin-coated vesicles. Analysis of deletion mutants indicated that the PDZ domain of GIPC specifically interacts with the C terminus of GAIP (11 amino acids) in the yeast two-hybrid system and glutathione S-transferase (GST)-GIPC pull-down assays, but GIPC does not interact with other members of the RGS (regulators of G protein signaling) family tested. This finding is in keeping with the fact that the C terminus of GAIP is unique and possesses a modified C-terminal PDZ-binding motif (SEA). By immunoblotting of membrane fractions prepared from HeLa cells, we found that there are two pools of GIPCa soluble or cytosolic pool (70%) and a membrane-associated pool (30%). By immunofluorescence, endogenous and GFP-tagged GIPC show both a diffuse and punctate cytoplasmic distribution in HeLa cells reflecting, respectively, the existence of soluble and membrane-associated pools. By immunoelectron microscopy the membrane pool of GIPC is associated with clusters of vesicles located near the plasma membrane. These data provide direct evidence that the C terminus of a RGS protein is involved in interactions specific for a given RGS protein and implicates GAIP in regulation of additional functions besides its GAP activity. The location of GIPC together with its binding to GAIP suggest that GAIP and GIPC may be components of a G protein-coupled signaling complex involved in the regulation of vesicular trafficking. The presence of an ACP domain suggests a putative function for GIPC in the acylation of vesicle-bound proteins.
Resumo:
Norepinephrine (NE) and angiotensin II (Ang II), by promoting extracellular Ca2+ influx, increase Ca2+/calmodulin-dependent kinase II (CaMKII) activity, leading to activation of mitogen-activated protein kinase (MAPK) and cytosolic phospholipase A2 (cPLA2), resulting in release of arachidonic acid (AA) for prostacyclin synthesis in rabbit vascular smooth muscle cells. However, the mechanism by which CaMKII activates MAPK is unclear. The present study was conducted to determine the contribution of AA and its metabolites as possible mediators of CaMKII-induced MAPK activation by NE, Ang II, and epidermal growth factor (EGF) in vascular smooth muscle cells. NE-, Ang II-, and EGF-stimulated MAPK and cPLA2 were reduced by inhibitors of cytochrome P450 (CYP450) and lipoxygenase but not by cyclooxygenase. NE-, Ang II-, and EGF-induced increases in Ras activity, measured by its translocation to plasma membrane, were abolished by CYP450, lipoxygenase, and farnesyltransferase inhibitors. An AA metabolite of CYP450, 20-hydroxyeicosatetraenoic acid (20-HETE), increased the activities of MAPK and cPLA2 and caused translocation of Ras. These data suggest that activation of MAPK by NE, Ang II, and EGF is mediated by a signaling mechanism involving 20-HETE, which is generated by stimulation of cPLA2 by CaMKII. Activation of Ras/MAPK by 20-HETE amplifies cPLA2 activity and releases additional AA by a positive feedback mechanism. This mechanism of Ras/MAPK activation by 20-HETE may play a central role in the regulation of other cellular signaling molecules involved in cell proliferation and growth.
Resumo:
G proteins play a major role in signal transduction upon platelet activation. We have previously reported a patient with impaired agonist-induced aggregation, secretion, arachidonate release, and Ca2+ mobilization. Present studies demonstrated that platelet phospholipase A2 (cytosolic and membrane) activity in the patient was normal. Receptor-mediated activation of glycoprotein (GP) IIb-IIIa complex measured by flow cytometry using antibody PAC-1 was diminished despite normal amounts of GPIIb-IIIa on platelets. Ca2+ release induced by guanosine 5-[-thio]triphosphate (GTP[S]) was diminished in the patients platelets, suggesting a defect distal to agonist receptors. GTPase activity (a function of -subunit) in platelet membranes was normal in resting state but was diminished compared with normal subjects on stimulation with thrombin, platelet-activating factor, or the thromboxane A2 analog U46619. Binding of 35S-labeled GTP[S] to platelet membranes was decreased under both basal and thrombin-stimulated states. Iloprost (a stable prostaglandin I2 analog) -induced rise in cAMP (mediated by Gs) and its inhibition (mediated by Gi) by thrombin in the patients platelet membranes were normal. Immunoblot analysis of G subunits in the patients platelet membranes showed a decrease in Gq (<50%) but not Gi, Gz, G12, and G13. These studies provide evidence for a hitherto undescribed defect in human platelet G-protein -subunit function leading to impaired platelet responses, and they provide further evidence for a major role of Gq in thrombin-induced responses.
Resumo:
NADPH:protochlorophyllide (Pchlide) oxidoreductase (POR) is the key enzyme of chlorophyll biosynthesis in angiosperms. In barley, two POR enzymes, termed PORA and PORB, exist. Both are nucleus-encoded plastid proteins that must be imported posttranslationally from the cytosol. Whereas the import of the precursor of PORA, pPORA, previously has been shown to depend on Pchlide, the import of pPORB occurred constitutively. To study this striking difference, chimeric precursor proteins were constructed in which the transit sequences of the pPORA and pPORB were exchanged and fused to either their cognate polypeptides or to a cytosolic dihydrofolate reductase (DHFR) reporter protein of mouse. As shown here, the transit peptide of the pPORA (transA) conferred the Pchlide requirement of import onto both the mature PORB and the DHFR. By contrast, the transit peptide of the pPORB directed the reporter protein into both chloroplasts that contained or lacked translocation-active Pchlide. In vitro binding studies further demonstrated that the transit peptide of the pPORA, but not of the pPORB, is able to bind Pchlide. We conclude that the import of the authentic pPORA and that of the transA-PORB and transA-DHFR fusion proteins is regulated by a direct transit peptide-Pchlide interaction, which is likely to occur in the plastid envelope, a major site of porphyrin biosynthesis.