861 resultados para Curricular Support Data Analysis
Resumo:
This project recognized lack of data analysis and travel time prediction on arterials as the main gap in the current literature. For this purpose it first investigated reliability of data gathered by Bluetooth technology as a new cost effective method for data collection on arterial roads. Then by considering the similarity among varieties of daily travel time on different arterial routes, created a SARIMA model to predict future travel time values. Based on this research outcome, the created model can be applied for online short term travel time prediction in future.
Resumo:
Monitoring gases for environmental, industrial and agricultural fields is a demanding task that requires long periods of observation, large quantity of sensors, data management, high temporal and spatial resolution, long term stability, recalibration procedures, computational resources, and energy availability. Wireless Sensor Networks (WSNs) and Unmanned Aerial Vehicles (UAVs) are currently representing the best alternative to monitor large, remote, and difficult access areas, as these technologies have the possibility of carrying specialised gas sensing systems, and offer the possibility of geo-located and time stamp samples. However, these technologies are not fully functional for scientific and commercial applications as their development and availability is limited by a number of factors: the cost of sensors required to cover large areas, their stability over long periods, their power consumption, and the weight of the system to be used on small UAVs. Energy availability is a serious challenge when WSN are deployed in remote areas with difficult access to the grid, while small UAVs are limited by the energy in their reservoir tank or batteries. Another important challenge is the management of data produced by the sensor nodes, requiring large amount of resources to be stored, analysed and displayed after long periods of operation. In response to these challenges, this research proposes the following solutions aiming to improve the availability and development of these technologies for gas sensing monitoring: first, the integration of WSNs and UAVs for environmental gas sensing in order to monitor large volumes at ground and aerial levels with a minimum of sensor nodes for an effective 3D monitoring; second, the use of solar energy as a main power source to allow continuous monitoring; and lastly, the creation of a data management platform to store, analyse and share the information with operators and external users. The principal outcomes of this research are the creation of a gas sensing system suitable for monitoring any kind of gas, which has been installed and tested on CH4 and CO2 in a sensor network (WSN) and on a UAV. The use of the same gas sensing system in a WSN and a UAV reduces significantly the complexity and cost of the application as it allows: a) the standardisation of the signal acquisition and data processing, thereby reducing the required computational resources; b) the standardisation of calibration and operational procedures, reducing systematic errors and complexity; c) the reduction of the weight and energy consumption, leading to an improved power management and weight balance in the case of UAVs; d) the simplification of the sensor node architecture, which is easily replicated in all the nodes. I evaluated two different sensor modules by laboratory, bench, and field tests: a non-dispersive infrared module (NDIR) and a metal-oxide resistive nano-sensor module (MOX nano-sensor). The tests revealed advantages and disadvantages of the two modules when used for static nodes at the ground level and mobile nodes on-board a UAV. Commercial NDIR modules for CO2 have been successfully tested and evaluated in the WSN and on board of the UAV. Their advantage is the precision and stability, but their application is limited to a few gases. The advantages of the MOX nano-sensors are the small size, low weight, low power consumption and their sensitivity to a broad range of gases. However, selectivity is still a concern that needs to be addressed with further studies. An electronic board to interface sensors in a large range of resistivity was successfully designed, created and adapted to operate on ground nodes and on-board UAV. The WSN and UAV created were powered with solar energy in order to facilitate outdoor deployment, data collection and continuous monitoring over large and remote volumes. The gas sensing, solar power, transmission and data management systems of the WSN and UAV were fully evaluated by laboratory, bench and field testing. The methodology created to design, developed, integrate and test these systems was extensively described and experimentally validated. The sampling and transmission capabilities of the WSN and UAV were successfully tested in an emulated mission involving the detection and measurement of CO2 concentrations in a field coming from a contaminant source; the data collected during the mission was transmitted in real time to a central node for data analysis and 3D mapping of the target gas. The major outcome of this research is the accomplishment of the first flight mission, never reported before in the literature, of a solar powered UAV equipped with a CO2 sensing system in conjunction with a network of ground sensor nodes for an effective 3D monitoring of the target gas. A data management platform was created using an external internet server, which manages, stores, and shares the data collected in two web pages, showing statistics and static graph images for internal and external users as requested. The system was bench tested with real data produced by the sensor nodes and the architecture of the platform was widely described and illustrated in order to provide guidance and support on how to replicate the system. In conclusion, the overall results of the project provide guidance on how to create a gas sensing system integrating WSNs and UAVs, how to power the system with solar energy and manage the data produced by the sensor nodes. This system can be used in a wide range of outdoor applications, especially in agriculture, bushfires, mining studies, zoology, and botanical studies opening the way to an ubiquitous low cost environmental monitoring, which may help to decrease our carbon footprint and to improve the health of the planet.
Resumo:
In recent years, increasing focus has been made on making good business decisions utilizing the product of data analysis. With the advent of the Big Data phenomenon, this is even more apparent than ever before. But the question is how can organizations trust decisions made on the basis of results obtained from analysis of untrusted data? Assurances and trust that data and datasets that inform these decisions have not been tainted by outside agency. This study will propose enabling the authentication of datasets specifically by the extension of the RESTful architectural scheme to include authentication parameters while operating within a larger holistic security framework architecture or model compliant to legislation.
Resumo:
National or International Significance Flows of cultural heritage in textual practices are vital to sustaining Indigenous communities - a national and international priority (Commonwealth of Australia, 2011). Indigenous heritage, whether passed on by oral tradition or ubiquitous social media, can be seen as a "conversation between the past and the future" (Fairclough, 2012, p. xv). Indigenous heritage involves appropriating memories within a cultural flow to pass on a spiritual legacy. This presentation reports ethnographic research of social media practices in a small independent Aboriginal school in Southeast Queensland, Australia that is resided over by the Yuggera elders and an Aboriginal principal. Quality of Research The purpose was to rupture existing notions of white literacies in schools, and to deterritorialize the uses of digital media by dominant cultures in the public sphere. Examples of learning experiences included the following: i. Integrating Indigenous language and knowledge into media text production; ii. Classroom visits from Indigenous elders; and iii. Publishing oral histories through digital scrapbooking. The program aligned with the Australian National Curriculum English (ACARA, 2014), which mandates the teaching of multimodal text creation. Data sources included a class set of digital scrapbooks collaboratively created in a preparatory-one primary classroom. The digital scrapbooks combined digitally encoded words, images of material artifacts, and digital music files. A key feature of the writing and digital design task was to retell and digitally display and archive a cultural narrative of significance to the Indigenous Australian community and its memories and material traces of the past for the future. Data analysis of the students' digital stories involved the application of key themes of negotiated, material, and digitally mediated forms of heritage practice. It drew on Australian Indigenous research by Keddie et al. (2013) to guard against the homogenizing of culture that can arise from a focus on a static view of culture. The interpretation of findings located Indigenous appropriation of social media within broader racialized politics that enables Indigenous literacy to be understood as a dynamic, negotiated, and transgenerational flows of practice. It demonstrates that Indigenous children's use of media production reflects "shifting and negotiated identities" in response to changing media environments that can function to sustain Indigenous cultural heritages (Appadurai, 1696, p. xv). Impact on practice, policy or theory The findings are important for teachers at a time when Aboriginal and Torres Strait Islander Histories and Cultures is a cross-curricular policy priority in the Australian Curriculum (ACARA, 2014). The findings show how curriculum policies can be applied to classroom practice in ways that are epistemologically consistent with Indigenous ways of knowing and being. Theoretically, it demonstrates how the children's experiences of culture are layered over time, as successive generations inherit, interweave, and hear others' cultural stories or maps. Practically, recommendations are provided for an approach to appropriating social media in schools that explicitly attends to the dynamic nature of Indigenous practices, negotiated through intercultural constructions and flows, and opening space for a critical anti-racist approach to multimodal text production. Timeliness The research is timely in the context of the accessibility and role of digital and multimodal forms of communication, including for Aboriginal and Torres Strait Islander communities.
Resumo:
This thesis proposes three novel models which extend the statistical methodology for motor unit number estimation, a clinical neurology technique. Motor unit number estimation is important in the treatment of degenerative muscular diseases and, potentially, spinal injury. Additionally, a recent and untested statistic to enable statistical model choice is found to be a practical alternative for larger datasets. The existing methods for dose finding in dual-agent clinical trials are found to be suitable only for designs of modest dimensions. The model choice case-study is the first of its kind containing interesting results using so-called unit information prior distributions.
Resumo:
This research investigates relationships between parental socio economic status and daughters' career aspirations; linking family background and the career choices made by teenage girls. Drawing on Bourdieu's theory of cultural capital, and figures produced by the Bradley Report's investigation, two Queensland State High Schools are the investigative platform to address the research questions. A quantitative data analysis investigated if a correlation between the indicators existed. The significance of the findings will contribute to future decision making regarding educational practices and socio economic backgrounds and to support the Bradley Report target of 20% of low SES students accessing higher education. The outcomes found that female students' aspirations are influenced by parental background in a variety of significant ways. An understanding of these assists schools in understanding how to influence girls' future aspirations.
Resumo:
An increasing number of organizations have installed enterprise social media (ESM) platforms to allow employees to collaborate, work independently, and to innovate more easily. While research has started to explain how such technologies can lead to improved collaboration and productivity, their role in assisting employees in innovation processes remains unclear. In our research-in-progress we examine the case of a global retail organization that adopted ESM for all employees with the view to foster employee-driven innovation. We report on our on-going data collection and analysis, in which we focus on the salient mechanisms and contingency factors why ESM under some conditions facilitates employee-driven innovation and why under some conditions it does not. We report on on-going data collection, data analysis strategies and emergent findings, and conclude with a brief outlook on our future research strategies.
Resumo:
The importance of a thorough and systematic literature review has long been recognised across academic domains as critical to the foundation of new knowledge and theory evolution. Driven by an exponentially growing body of knowledge in the IS discipline, there has been a recent influx of guidance on how to conduct a literature review. As literature reviews are emerging as a standalone research method in itself, increasingly these method focused guidelines are of great interest, receiving acceptance at top tier IS publication outlets. Nevertheless, the finer details which offer justification for the selected content, and the effective presentation of supporting data has not been widely discussed in these method papers to date. This paper addresses this gap by exploring the concept of ‘literature profiling’ while arguing that it is a key aspect of a comprehensive literature review. The study establishes the importance of profiling for managing aspects such as quality assurance, transparency and the mitigation of selection bias. And then discusses how profiling can provide a valid basis for data analysis based on the attributes of selected literature. In essence, this study has conducted an archival analysis of literature (predominately from the IS domain) to present its main argument; the value for literature profiling, with supporting exemplary illustrations.
Resumo:
Background The evaluation of the hand function is an essential element within the clinical practice. The usual assessments are focus on the ability to perform activities of daily life. The inclusion of instruments to measure kinematic variables provides a new approach to the assessment. Inertial sensors adapted to the hand could be used as a complementary instrument to the traditional assessment. Material: clinimetric assessment (Upper Limb Functional Index, Quick Dash), antrophometric variables (eight and weight), dynamometry (palm preasure) was taken. Functional analysis was made with Acceleglove system for the right hand and computer system. The glove has six acceleration sensor, one on each finger and another one on the reverse palm. Method Analytic, transversal approach. Ten healthy subject made six task on evaluation table (tripod pinch, lateral pinch and tip pinch, extension grip, spherical grip and power grip). Each task was made and measure three times, the second one was analyze for the results section. A Matlab script was created for the analysis of each movement and detection phase based on module vector. Results The module acceleration vector offers useful information of the hand function. The data analysis obtained during the performance of functional gestures allows to identify five different phases within the movement, three static phase and tow dynamic, each module vector was allied to one task. Conclusion Module vector variables could be used for the analysis of the different task made by the hand. Inertial sensor could be use as a complement for the traditional assessment system.
Resumo:
Big data analysis in healthcare sector is still in its early stages when comparing with that of other business sectors due to numerous reasons. Accommodating the volume, velocity and variety of healthcare data Identifying platforms that examine data from multiple sources, such as clinical records, genomic data, financial systems, and administrative systems Electronic Health Record (EHR) is a key information resource for big data analysis and is also composed of varied co-created values. Successful integration and crossing of different subfields of healthcare data such as biomedical informatics and health informatics could lead to huge improvement for the end users of the health care system, i.e. the patients.
Resumo:
This review is focused on the impact of chemometrics for resolving data sets collected from investigations of the interactions of small molecules with biopolymers. These samples have been analyzed with various instrumental techniques, such as fluorescence, ultraviolet–visible spectroscopy, and voltammetry. The impact of two powerful and demonstrably useful multivariate methods for resolution of complex data—multivariate curve resolution–alternating least squares (MCR–ALS) and parallel factor analysis (PARAFAC)—is highlighted through analysis of applications involving the interactions of small molecules with the biopolymers, serum albumin, and deoxyribonucleic acid. The outcomes illustrated that significant information extracted by the chemometric methods was unattainable by simple, univariate data analysis. In addition, although the techniques used to collect data were confined to ultraviolet–visible spectroscopy, fluorescence spectroscopy, circular dichroism, and voltammetry, data profiles produced by other techniques may also be processed. Topics considered including binding sites and modes, cooperative and competitive small molecule binding, kinetics, and thermodynamics of ligand binding, and the folding and unfolding of biopolymers. Applications of the MCR–ALS and PARAFAC methods reviewed were primarily published between 2008 and 2013.
Resumo:
Increasingly larger scale applications are generating an unprecedented amount of data. However, the increasing gap between computation and I/O capacity on High End Computing machines makes a severe bottleneck for data analysis. Instead of moving data from its source to the output storage, in-situ analytics processes output data while simulations are running. However, in-situ data analysis incurs much more computing resource contentions with simulations. Such contentions severely damage the performance of simulation on HPE. Since different data processing strategies have different impact on performance and cost, there is a consequent need for flexibility in the location of data analytics. In this paper, we explore and analyze several potential data-analytics placement strategies along the I/O path. To find out the best strategy to reduce data movement in given situation, we propose a flexible data analytics (FlexAnalytics) framework in this paper. Based on this framework, a FlexAnalytics prototype system is developed for analytics placement. FlexAnalytics system enhances the scalability and flexibility of current I/O stack on HEC platforms and is useful for data pre-processing, runtime data analysis and visualization, as well as for large-scale data transfer. Two use cases – scientific data compression and remote visualization – have been applied in the study to verify the performance of FlexAnalytics. Experimental results demonstrate that FlexAnalytics framework increases data transition bandwidth and improves the application end-to-end transfer performance.
Resumo:
Drawing on multimodal texts produced by an Indigenous school community in Australia, I apply critical race theory and multimodal analysis (Jewitt, 2011) to decolonise digital heritage practices for Indigenous students. This study focuses on the particular ways in which students’ counter-narratives about race were embedded in multimodal and digital design in the development of a digital cultural heritage (Giaccardi, 2012). Data analysis involved applying multimodal analysis to the students’ Gamis, following social semiotic categories and principles theorised by Kress and Bezemer (2008), and Jewitt (2006, 2011). This includes attending to the following semiotic elements: visual design, movement and gesture, gaze, and recorded speech, and their interrelationships. The analysis also draws on critical race theory to interpret the students’ representations of race. In particular, the multimodal texts were analysed as a site for students’ views of Indigenous oppression in relation to the colonial powers and ownership of the land in Australian history (Ladson-Billings, 2009). Pedagogies that explore counter-narratives of cultural heritage in the official curriculum can encourage students to reframe their own racial identity, while challenging dominant white, historical narratives of colonial conquest, race, and power (Gutierrez, 2008). The children’s multimodal “Gami” videos, created with the iPad application, Tellagami, enabled the students to imagine hybrid, digital social identities and perspectives of Australian history that were tied to their Indigenous cultural heritage (Kamberelis, 2001).
Resumo:
This paper proposes a linear quantile regression analysis method for longitudinal data that combines the between- and within-subject estimating functions, which incorporates the correlations between repeated measurements. Therefore, the proposed method results in more efficient parameter estimation relative to the estimating functions based on an independence working model. To reduce computational burdens, the induced smoothing method is introduced to obtain parameter estimates and their variances. Under some regularity conditions, the estimators derived by the induced smoothing method are consistent and have asymptotically normal distributions. A number of simulation studies are carried out to evaluate the performance of the proposed method. The results indicate that the efficiency gain for the proposed method is substantial especially when strong within correlations exist. Finally, a dataset from the audiology growth research is used to illustrate the proposed methodology.