985 resultados para Cross-shore profile
Resumo:
We report on a measurement of the gamma(1S + 2S + 3S) -> e(+)e(-) cross section at midrapidity in p + p collisions at root s = 200 GeV. We find the cross section to be 114 +/- 38(stat + fit)(-24)(+23)(syst) pb. Perturbative QCD calculations at next-to-leading order in the color evaporation model are in agreement with our measurement, while calculations in the color singlet model underestimate it by 2 sigma. Our result is consistent with the trend seen in world data as a function of the center-of-mass energy of the collision and extends the availability of gamma data to RHIC energies. The dielectron continuum in the invariant-mass range near the gamma is also studied to obtain a combined yield of e(+)e(-) pairs from the sum of the Drell-Yan process and b-(b) over bar production.
Resumo:
The elastic scattering of (6)He on (120)Sn has been measured at four energies above the Coulomb barrier using the (6)He beam produced at the RIBRAS (Radioactive Ion Beams in Brasil) facility. The elastic angular distributions have been analyzed with the optical model and three- and four-body continuum-discretized coupled-channels calculations. The total reaction cross sections have been derived and compared with other systems of similar masses.
Resumo:
We report a measurement of the longitudinal double-spin asymmetry A(LL) and the differential cross section for inclusive pi(0) production at midrapidity in polarized proton collisions at s=200 GeV. The cross section was measured over a transverse momentum range of 1 < p(T)< 17 GeV/c and found to be in good agreement with a next-to-leading order perturbative QCD calculation. The longitudinal double-spin asymmetry was measured in the range of 3.7 < p(T)< 11 GeV/c and excludes a maximal positive gluon polarization in the proton. The mean transverse momentum fraction of pi(0)'s in their parent jets was found to be around 0.7 for electromagnetically triggered events.
Resumo:
The elastic-scattering angular distribution for (8)Li on (12)C has been measured at E(LAB) = 23.9 MeV with (8)Li radioactive nuclear beam produced by the Radioactive Ion Beams in Brazil facility. This angular distribution was analyzed in terms of optical-model with Woods-Saxon and double-folding Sao Paulo potential. The roles of the breakup and inelastic channels were also investigated with cluster folding and deformed potentials, respectively, through coupled-channels calculations. The angular distribution for the proton-transfer (12)C((8)Li, (9)Be)(11)B reaction was also measured at the same energy. The spectroscopic factor for the <(9)Be|(8)Li + p > bound system was obtained and compared with shell-model calculations and with other experimental values. Total reaction cross sections for the present system were also extracted from the elastic-scattering analysis. A systematic of the reduced reaction cross sections obtained from the present and published data on (6,7,8)Li isotopes on (12)C was performed as a function of energy.
Resumo:
Elastic scattering of (8)B, (7)Be, and (6)Li on a (58)Ni target has been measured at energies near the Coulomb barrier. Optical-model fits were made to the experimental angular distributions, and total reaction cross sections were deduced. A comparison with other systems provides striking evidence for proton-halo effects on (8)B reactions. As opposed to the situation for the neutron-halo nucleus (6)He, for which particle transfer dominates, the ""extra"" cross section observed for (8)B appears to result entirely from projectile breakup.
Resumo:
Angular distributions for the elastic scattering of (8)B, (7)Be, and (6)Li on a (12)C target have been measured at E(lab) = 25.8, 18.8, and 12.3 MeV, respectively. The analyses of these angular distributions have been performed in terms of the optical model using Woods-Saxon and double-folding type potentials. The effect of breakup in the elastic scattering of (8)B + (12)C is investigated by performing coupled-channels calculations with the continuum discretized coupled-channel method and cluster-model folding potentials. Total reaction cross sections were deduced from the elastic-scattering analysis and compared with published data on elastic scattering of other weakly and tightly bound projectiles on (12)C, as a function of energy. With the exception of (4)He and (16)O, the data can be described using a universal function for the reduced cross sections.
Resumo:
The absorption cross section of Reissner-Nordstroumlm black holes for the electromagnetic field is computed numerically for arbitrary frequencies, taking into account the coupling of the electromagnetic and gravitational perturbations. We also compute the conversion coefficients of electromagnetic to gravitational waves by scattering from a Reissner-Nordstroumlm black hole.
Resumo:
We show that bifurcations in chaotic scattering manifest themselves through the appearance of an infinitely fine-scale structure of singularities in the cross section. These ""rainbow singularities"" are created in a cascade, which is closely related to the bifurcation cascade undergone by the set of trapped orbits (the chaotic saddle). This cascade provides a signature in the differential cross section of the complex pattern of bifurcations of orbits underlying the transition to chaotic scattering. We show that there is a power law with a universal coefficient governing the sequence of births of rainbow singularities and we verify this prediction by numerical simulations.
Resumo:
The absorption cross section of Reissner-Nordstrom black holes for the electromagnetic field is computed numerically for arbitrary frequencies. The numerical results are in excellent agreement with the low- and high-frequency limits, which are obtained with analytical methods. Special emphasis is given to the extreme Reissner-Nordstrom black hole case.
Resumo:
Background: Schistosoma mansoni is the major causative agent of schistosomiasis. The parasite takes advantage of host signals to complete its development in the human body. Tumor necrosis factor-alpha (TNF-alpha) is a human cytokine involved in skin inflammatory responses, and although its effect on the adult parasite's metabolism and egg-laying process has been previously described, a comprehensive assessment of the TNF-alpha pathway and its downstream molecular effects is lacking. Methodology/Principal Findings: In the present work we describe a possible TNF-alpha receptor (TNFR) homolog gene in S. mansoni (SmTNFR). SmTNFR encodes a complete receptor sequence composed of 599 amino acids, and contains four cysteine-rich domains as described for TNFR members. Real-time RT-PCR experiments revealed that SmTNFR highest expression level is in cercariae, 3.5 (+/- 0.7) times higher than in adult worms. Downstream members of the known human TNF-alpha pathway were identified by an in silico analysis, revealing a possible TNF-alpha signaling pathway in the parasite. In order to simulate parasite's exposure to human cytokine during penetration of the skin, schistosomula were exposed to human TNF-alpha just 3 h after cercariae-to-schistosomula in vitro transformation, and large-scale gene expression measurements were performed with microarrays. A total of 548 genes with significantly altered expression were detected, when compared to control parasites. In addition, treatment of adult worms with TNF-alpha caused a significantly altered expression of 1857 genes. Interestingly, the set of genes altered in adults is different from that of schistosomula, with 58 genes in common, representing 3% of altered genes in adults and 11% in 3 h-old early schistosomula. Conclusions/Significance: We describe the possible molecular elements and targets involved in human TNF-alpha effect on S. mansoni, highlighting the mechanism by which recently transformed schistosomula may sense and respond to this host mediator at the site of cercarial penetration into the skin.
Resumo:
In this article, we evaluate the use of simple Lee-Goldburg cross-polarization (LG-CP) NMR experiments for obtaining quantitative information of molecular motion in the intermediate regime. In particular, we introduce the measurement of Hartmann-Hahn matching profiles for the assessment of heteronuclear dipolar couplings as well as dynamics as a reliable and robust alternative to the more common analysis of build-up curves. We have carried out dynamic spin dynamics simulations in order to test the method's sensitivity to intermediate motion and address its limitations concerning possible experimental imperfections. We further demonstrate the successful use of simple theoretical concepts, most prominently Anderson-Weiss (AW) theory, to analyze the data. We further propose an alternative way to estimate activation energies of molecular motions, based upon the acquisition of only two LG-CP spectra per temperature at different temperatures. As experimental tests, molecular jumps in imidazole methyl sulfonate, trimethylsulfoxonium iodide, and bisphenol A polycarbonate were investigated with the new method.
Resumo:
Background: Persistent infection by high risk HPV types (e.g. HPV-16, -18, -31, and -45) is the main risk factor for development of cervical intraepithelial neoplasia and cervical cancer. Tumor necrosis factor (TNF) is a key mediator of epithelial cell inflammatory response and exerts a potent cytostatic effect on normal or HPV16, but not on HPV18 immortalized keratinocytes. Moreover, several cervical carcinoma-derived cell lines are resistant to TNF anti-proliferative effect suggesting that the acquisition of TNF-resistance may constitute an important step in HPV-mediated carcinogenesis. In the present study, we compared the gene expression profiles of normal and HPV16 or 18 immortalized human keratinocytes before and after treatment with TNF for 3 or 60 hours. Methods: In this study, we determined the transcriptional changes 3 and 60 hours after TNF treatment of normal, HPV16 and HPV18 immortalized keratinocytes by microarray analysis. The expression pattern of two genes observed by microarray was confirmed by Northern Blot. NF-kappa B activation was also determined by electrophoretic mobility shift assay (EMSA) using specific oligonucleotides and nuclear protein extracts. Results: We observed the differential expression of a common set of genes in two TNF-sensitive cell lines that differs from those modulated in TNF-resistant ones. This information was used to define genes whose differential expression could be associated with the differential response to TNF, such as: KLK7 (kallikrein 7), SOD2 (superoxide dismutase 2), 100P (S100 calcium binding protein P), PI3 (protease inhibitor 3, skin-derived), CSTA (cystatin A), RARRES1 (retinoic acid receptor responder 1), and LXN (latexin). The differential expression of the KLK7 and SOD2 transcripts was confirmed by Northern blot. Moreover, we observed that SOD2 expression correlates with the differential NF-kappa B activation exhibited by TNF-sensitive and TNF-resistant cells. Conclusion: This is the first in depth analysis of the differential effect of TNF on normal and HPV16 or HPV18 immortalized keratinocytes. Our findings may be useful for the identification of genes involved in TNF resistance acquisition and candidate genes which deregulated expression may be associated with cervical disease establishment and/or progression.
Resumo:
Mitochondria and NADPH oxidase activation are concomitantly involved in pathogenesis of many vascular diseases. However, possible cross-talk between those ROS-generating systems is unclear. We induced mild mitochondrial dysfunction due to mitochondrial DNA damage after 24 h incubation of rabbit aortic smooth muscle (VSMC) with 250 ng/mL ethidium bromide (EtBr). VSMC remained viable and had 29% less oxygen consumption, 16% greater baseline hydrogen peroxide, and unchanged glutathione levels. Serum-stimulated proliferation was unaltered at 24 h. Although PCR amplification of several mtDNA sequences was preserved, D-Loop mtDNA region showed distinct amplification of shorter products after EtBr. Such evidence for DNA damage was further enhanced after angiotensin-II (AngII) incubation. Remarkably, the normally observed increase in VSMC membrane fraction NADPH oxidase activity after AngII was completely abrogated after EtBr, together with failure to upregulate Nox1 mRNA expression. Conversely, basal Nox4 mRNA expression increased 1.6-fold, while being unresponsive to AngII. Similar loss in AngII redox response occurred after 24 h antimycin-A incubation. Enhanced Nox4 expression was unassociated with endoplasmic reticulum stress markers. Protein disulfide isomerase, an NADPH oxidase regulator, exhibited increased expression and inverted pattern of migration to membrane fraction after EtBr. These results unravel functionally relevant cross-talk between mitochondria and NADPH oxidase, which markedly affects redox responses to AngII. Antioxid Redox Signal 11, 1265-1278.
Resumo:
Post-settlement processes are a major focus in the study of the dynamics of marine populations and communities. Post-settlement movement of juveniles is an important, but often ignored, process which affects local predator-prey and competitive interactions. We used benthic suction sampling and pitfall traps to examine density and locomotory activity of Carcinus maenas juveniles in different intertidal habitat types in the Rio Mira Estuary, Portugal, to better understand intra-specific interactions in a system where density-dependent processes are known to regulate population dynamics. As expected, significantly higher densities of juvenile shore crabs were found from bare mud compared to densely vegetated habitats. At the time of sampling, small and intermediate stages together outnumbered by far the larger juveniles. Conversely, larger crabs were much more frequent than smaller ones in traps. A locomotory index (LI), i.e. the ratio between crab catch in pitfall traps and their density within their moving range, is proposed as a measure of movement. LI analyses indicated that: (1) movement is an order of magnitude higher in large than small juveniles and much higher in sparse than dense vegetation cover; (2) activity of small juveniles is mostly crepuscular, regardless of vegetation cover; and (3) movement of large juveniles is very limited in dense Zostera patches, but very high in sparsely vegetated areas, during the day and night. These results suggest that small juveniles are relatively protected under dense vegetation cover due to lower mobility of larger crabs, and provide evidence of temporal segregation of activity windows between juvenile crabs of different sizes, which may be a key mechanism to reduce cannibalism and therefore increase the carrying capacity of nursery habitats. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
It is widely assumed that optimal timing of larval release is of major importance to offspring survival, but the extent to which environmental factors entrain synchronous reproductive rhythms in natural populations is not well known. We sampled the broods of ovigerous females of the common shore crab Pachygrapsus transversus at both sheltered and exposed rocky shores interspersed along a so-km coastline, during four different periods, to better assess inter-population differences of larval release timing and to test for the effect of wave action. Shore-specific patterns were consistent through time. Maximum release fell within 1 day around syzygies on all shores, which matched dates of maximum tidal amplitude. Within this very narrow range, populations at exposed shores anticipated hatching compared to those at sheltered areas, possibly due to mechanical stimulation by wave action. Average departures from syzygial release ranged consistently among shores from 2.4 to 3.3 days, but in this case we found no evidence for the effect of wave exposure. Therefore, processes varying at the scale of a few kilometres affect the precision of semilunar timing and may produce differences in the survival of recently hatched larvae. Understanding the underlying mechanisms causing departures from presumed optimal release timing is thus important for a more comprehensive evaluation of reproductive success of invertebrate populations.