968 resultados para Crane flies.
Resumo:
SUMMARY LATS2 is a member of the Lats tumour suppressor gene family. The human LATS2 gene is located at chromosome 13q11-12, which has been shown to be a hot spot (67%) for LOH in nonsmall cell lung cancer. Both lats mosaic flies and LATS1 deficient mice spontaneously develop tumours, an observation that is explained by the function of LATS1 in suppressing tumourigenesis by negatively regulating cell proliferation by modulating Cdc2/Cyclin A activity. LATS1 also plays a critical role in maintenance of ploidy through its action on the spindle assembly checkpoint. Initial insights into the function of LATS2 reveals that the protein is involved in the G2/M transition of the cell cycle, whereby it controls the phosphorylation status of Cdc25C. The aim of the present study was to identify LATS2 interacting partners that would provide a more thorough understanding of the molecular pathways in which the protein is involved. The yeast two-hybrid system identified a number of candidate genes that interact with LATS2. Most of the interactions were confirmed biochemically by GST-pull down assays that enabled us to demonstrate that LATS2 is an integral component of the Signalosome complex. The Signalosome is thought to be required for the establishment of functional Cullin-based E3 ubiquitin ligases, the substrate-recognition elements of the ubiquitin-mediated protein proteolytic pathway. The findings that LATS2 also interacts with all of the components of the E3 enzymes allows us to postulate that LATS2 is probably involved in the regulation of this Signalosome-E3 super-complex. In addition, the discovery that LATS2 associates with multiple protein kinases localised at the cellular membrane and in various signalling cascades supports the idea that LATS2 functions as an integrator of signals which allows it to monitor the activity of these pathways and translate these signals through its action on the Signalosome. Furthermore, the observation that a kinase-dead LATS2 mutant arrests at the G2/M phase of the cell cycle, demonstrates that the protein, through the action of its kinase domain, is crucial for progression through the cell cycle, an action in accordance to its proposed role as a regulator of E3 ubiquitin ligases. The findings presented herein provide evidence that LATS2 associates with the Signalosome-E3 ubiquitin ligases super-complex which governs protein stability. Any alteration of the protein would have a strong impact on pathways that modulate cell proliferation, as shown by its implication in tumourigenesis. RESUME LATS2 est un membre de la famille de gènes suppresseurs de tumeurs LATS. Le gène humain LATS2 est situé sur le chromosome 13q11-12, une région qui s'est avérée être un point sensible (67%) dans la perte d'hétérozigosité (LOH) notamment pour le cancer du poumon. Le fait que des tumeurs se développent spontanément chez les souris qui sont déficientes pour le gène LATS1 ainsi que dans des cellules mutantes pour LATS chez la Drosophile, est expliqué Par la fonction de LATS1, qui est de supprimer l'apparition de tumeurs en réprimant la prolifération cellulaire à travers sa capacité à réguler l'activité de Cdc2/Cyciine A. LATS1 joue également un rôle important au niveau du maintient de la ploïdie de la cellule, au travers de son action sur les points de contrôle de l'assemblage du fuseau mitotique. Les premières études du gène LATS2 indiquent que la protéine est, par son contrôle des réactions de phosphorylation de la Cdc25C, impliquée dans la transition 021M. Le but de cette étude était d'identifier les protéines qui interagissent avec LATS2, en vue d'obtenir une compréhension plus approfondie des mécanismes moléculaires dans lesquels LATS2 se trouve engagée. Le système de double-hybride chez la levure a permis l'identification d'un grand nombre de gènes qui interagissent avec LATS2. La plupart des interactions ont été confirmées par GST «pull clown», une technique in vitro qui a permis de démontrer que LATS2 est un composant intégral du Signalosome. Ce complexe est supposé réguler l'activité des E3 ubiquitine-rigases, les éléments responsables du recrutement des substrats qui doivent être recyclés par la voie de dégradation ubiquitine-dépendante. Les résultats obtenus indiquent également que LATS2 interagit avec tous les composants des enzymes E3, ce qui nous permet de soumettre l'idée selon laquelle la protéine LATS2 est en fait impliquée dans la régulation du complexe Signalosorne-E3. De plus, la découverte que LATS2 se trouve associée à plusieurs protéines kinases localisées au niveau de la membrane cellulaire, ainsi que dans diverses voies de transduction, confirment l'idée que LATS2 fonctionne en tant que molécule qui intègre les signaux en provenance de ces différentes voies cellulaires. De ce fait, il lui serait possible de coordonner la destruction des protéines au moyen du complexe Signalosome, permettant ainsi de réprimer l'activité des voies de signalisation. En outre, l'introduction d'une mutation dans le domaine kinase de LATS2 résulte en l'arrêt du cycle cellulaire en G2/M, ce qui montre que la protéine, au travers de son domaine kinase, est cruciale pour le bon fonctionnement du cycle cellulaire, ceci en accord avec son rôle proposé comme régulateur des E3 ubiquitine-ligases. Les résultats présentés dans ce manuscrit démontrent que la protéine LATS2 se trouve associée au complexe Signalosome-E3 qui régule la dégradation des protéines. La moindre modification de la protéine engendrerait des répercussions importantes au niveau des voies de transduction qui contrôlent fa prolifération ceilulaire, ce qui atteste du rôle déterminant que joue LAT32 dans la tumorigénèse.
Resumo:
Both stress during development and response to directional selection were proposed to lead to reduced developmental stability of an organism, commonly measured as fluctuating asymmetry. Here, we investigated the direct physiological (plastic) effect of larval malnutrition and the effect of evolutionary adaptation to this form of stress on developmental stability, measured as fluctuating asymmetry of several wing measurements. The measurements were made on female Drosophila melanogaster from populations which, in the course of 84 generations of experimental evolution, adapted to malnutrition and from non-adapted controls, raised either under standard conditions or under nutritional stress. We detected no changes in the levels of fluctuating asymmetry as either a plastic or an evolutionary response. Thus, neither nutritional stress within lifetime nor directional selection it imposes seems to affect developmental stability in flies.
Resumo:
We describe a technique to separate male and female pupae of sand flies. This has reduced the labour to separate flies after emergence and also allows the isolation of unmated adults for behavioural and physiological studies.
Resumo:
The fossil record and systematics of murid rodents, reservoirs of zoonotic cutaneous leishmaniasis in the Palaearctic, Oriental, African, Nearctic and Neotropical, strongly support a Palaearctic origin of Leishmania. The fossil record and systematics of phlebotomine sand flies reinforce this idea. Interpretations of molecular data that place the origin of Leishmania in the Neotropical are inconsistent with the natural histories of reservoirs and vectors. The evolutionary pattern of New World rats (Sigmodontinae) indicates that they may be the most important reservoirs of zoonotic cutaneous leishmaniasis throughout their range.
Resumo:
The evolutionary relationships of sand flies and Leishmania are discussed in this report, which draws distinctions between co-association, co-evolution and co-speciation (or co-cladogenesis). Examples focus on Phlebotomus vectors of Le. infantum and Le. major in the Mediterranean subregion.
Resumo:
Bacteria active against dipteran larvae (mosquitoes and black flies) include a wide variety of Bacillus thuringiensis and B. sphaericus strains, as well as isolates of Brevibacillus laterosporus and Clostridium bifermentans. All display different spectra and levels of activity correlated with the nature of the toxins, mainly produced during the sporulation process. This paper describes the structure and mode of action of the main mosquitocidal toxins, in relationship with their potential use in mosquito and/or black fly larvae control. Investigations with laboratory and field colonies of mosquitoes that have become highly resistant to the B. sphaericus Bin toxin have shown that several mechanisms of resistance are involved, some affecting the toxin/receptor binding step, others unknown.
Resumo:
Bacillus spp. based larvides are increasingly replacing, with numerous advantages, chemical insecticides in programmes for controlling black fly and mosquito populations. Brazil was among the pioneers in adopting Bacillus thuringiensis israelensis (B.t.i) to control black flies. However, the major current mosquito control programme in Brazil, the Programme for Eradication of Aedes aegypti launched in 1997, only recently decided to replace temephos by B.t.i based larvicides, in the State of Rio de Janeiro. In the last decade, works developed by research groups in Brazilian institutions have generated a significant contribution to this subject through the isolation of B. sphaericus new strains, the development of new products and the implementation of field trials of Bacillus efficacy against mosquito species under different environmental conditions.
Resumo:
Molecular studies of insect disease vectors are of paramount importance for understanding parasite-vector relationship. Advances in this area have led to important findings regarding changes in vectors' physiology upon blood feeding and parasite infection. Mechanisms for interfering with the vectorial capacity of insects responsible for the transmission of diseases such as malaria, Chagas disease and dengue fever are being devised with the ultimate goal of developing transgenic insects. A primary necessity for this goal is information on gene expression and control in the target insect. Our group is investigating molecular aspects of the interaction between Leishmania parasites and Lutzomyia sand flies. As an initial step in our studies we have used random sequencing of cDNA clones from two expression libraries made from head/thorax and abdomen of sugar fed L. longipalpis for the identification of expressed sequence tags (EST). We applied differential display reverse transcriptase-PCR and randomly amplified polymorphic DNA-PCR to characterize differentially expressed mRNA from sugar and blood fed insects, and, in one case, from a L. (V.) braziliensis-infected L. longipalpis. We identified 37 cDNAs that have shown homology to known sequences from GeneBank. Of these, 32 cDNAs code for constitutive proteins such as zinc finger protein, glutamine synthetase, G binding protein, ubiquitin conjugating enzyme. Three are putative differentially expressed cDNAs from blood fed and Leishmania-infected midgut, a chitinase, a V-ATPase and a MAP kinase. Finally, two sequences are homologous to Drosophila melanogaster gene products recently discovered through the Drosophila genome initiative.
Resumo:
Polyacrylamide gel electrophoresis was used to elucidate genetic variation at 13 isozyme loci among forest populations of Lutzomyia shannoni from three widely separated locations in Colombia: Palambí (Nariño Department), Cimitarra (Santander Department) and Chinácota (Norte de Santander Department). These samples were compared with a laboratory colony originating from the Magdalena Valley in Central Colombia. The mean heterozygosity ranged from 16 to 22%, with 2.1 to 2.6 alleles detected per locus. Nei's genetic distances among populations were low, ranging from 0.011 to 0.049. The estimated number of migrants (Nm=3.8) based on Wright's F-Statistic, F ST, indicated low levels of gene flow among Lu. shannoni forest populations. This low level of migration indicates that the spread of stomatitis virus occurs via infected host, not by infected insect. In the colony sample of 79 individuals, the Gpi locus was homozygotic (0.62/0.62) in all females and heterozygotic (0.62/0.72) in all males. Although this phenomenon is probably a consequence of colonization, it indicates that Gpi is linked to a sex determining locus.
Resumo:
The eggshell fine structure of five sand fly species from Venezuela belonging to the genus Lutzomyia (L. migonei, L. ovallesi, L. absonodonta, L. gomezi and L. panamensis) was examined by scanning electron microscopy. The chorionic sculpturing of L. migonei, L. ovallesi, L. absonodonta and L. gomezi was characterized by series of columns arranged in palisade to form sinuous ridges. In inter-ridge areas, the basal layer was covered with fibrous material. The outer chorion of L. panamensis had a pattern known as "mountain- or volcano-like". The morphology of the posterior pole and aeropyle had a common structure in the five species, with some species-specific characters. The eggshell features of the five species are compared with those of other phlebotomine sand flies.
Resumo:
Migration and colonization of the oesophagus by Leishmania mexicana parasites were enhanced after digestion of a second bloodmeal intake in Lutzomyia evansi. This event has epidemiological significance since it affects the infection susceptibility of this sand fly species, which is a proven vector of L. chagasi in Colombian and Venezuelan visceral leishmaniasis foci. Also, it may explain the host seeking behaviour displayed by some partially bloodfed flies found inside houses.
Resumo:
From June 1993 to May 1995, horn fly counts were conducted twice a month on untreated Nelore cattle raised extensively in the Pantanal. Horn fly population showed a bimodal fluctuation and peaks were observed every year after the beginning (November/December) and at the end (May/June) of the rainy season, which coincided with mid-late spring and mid-late fall, respectively. Horn flies were present on cattle throughout the year in at least 64% of the animals. Mean horn fly numbers on animals did not exceed 85 flies/cow during peaks and were under 35 flies/cow in most of the remaining periods. The highest infestations (population peaks) were short and dropped suddenly within two weeks. Less than 15% of the animals in both herds could be considered as "fly-susceptible" - showing consistently higher infestations, or "fly-resistant" - showing consistently lower infestations.
Resumo:
Mansonella ozzardi, a relatively non pathogenic filarial parasite of man in Latin America, is transmitted by either ceratopogonid midges or simuliid blackflies. In the only known focus of the disease in north-western Argentina the vectors have never been incriminated. This study investigated the potential vectors of M. ozzardi in this area. The only anthropophilic species of these Diptera families biting man at the time of the investigation were Simulium exiguum, S. dinellii, Culicoides lahillei and C. paraensis. Using experimentally infected flies S. exiguum and both species of Culicoides allowed full development of microfilariae to the infective stage, with C. lahillei being a more competent host than S. exiguum. Based on these data, biting rates and natural infectivity rates it is probable that at the begininning of the wet season C. lahillei is the main vector of M. ozzardi and both C. paraensis and S. exiguum secondary vectors. Additionally, it was found that a single dose of ivermectin was ineffectual in eradicating M. ozzardi from infected individuals in this area.
Resumo:
A white Shannon-type trap was used for captures of female sand flies in the search for natural infection with flagellates, however, due to its low productivity and as a large number of phlebotomines settled on the researchers' black clothes, we decided to compare the relative attractiveness of black and white Shannon-type traps for sand flies. Several pairs of black and white traps were placed side by side in front of caves in four areas in the Serra da Bodoquena, Bonito county, State of Mato Grosso do Sul, Brazil, for a total of 12 observations and 44 h of capture. The experiment resulted in 889 phlebotomines captured, 801 on the black and 88 on the white trap, representing 13 species. The hourly Williams' means were 8.67 and 1.24, respectively, and the black/white ratio was 7.0:1.0. Lutzomyia almerioi, an anthropophilic species closely associated with caves, was predominant (89%). Only two other species, Nyssomyia whitmani and Psathyromyia punctigeniculata, also anthropophilic, were significantly attracted to the black rather than to the white trap (chi2 test; p <= 0.01). The difference between the diversity index of the two traps was not significant at level 0.05. The black trap in these circumstances was much more productive than the white, especially for anthropophilic species.
Resumo:
Deltamethrin-impregnated PVC dog collars were tested to assess if they were effective in protecting dogs from sand fly bites of Lutzomyia longipalpis and Lu. migonei. A protective effect against Old World species Phlebotomus perniciosus was demonstrated before. Four dogs wearing deltamethrin collars and three dogs wearing untreated collars (not impregnated with deltamethrin) were kept in separate kennels for over eight months in a village on the outskirts of Fortaleza in Ceará, Brazil. Periodically, a dog from each group was sedated, placed in a net cage for 2 h in which 150 female sand flies had been released 10-15 min before. Lu. longipalpis were used 4, 8, 12, 16, 22, 27, and 35 weeks after the attachment of the collars. Lu. migonei were used 3, 7, 11, 15, 22, 26, and 36 weeks after attachment. During 35 weeks, only 4.1% (81 of 2,022) Lu. longipalpis recovered from the nets with the deltamethrin collared dogs were engorged, an anti-feeding effect of 96%. Mortality initially was over 90% and at 35 weeks was 35% with half of the sand flies dying in the first 2 h. In contrast, 83% of the 2,094 Lu. longipalpis recovered from the nets containing the untreated collared dogs were engorged and the mortality ranged from zero to 18.8% on one occasion with 1.1% dying in the first 2 h. Similar findings were found with Lu. migonei: of 2,034 sand flies recovered over this period, only 70 were engorged, an anti-feeding effect of 96.5%, and mortality ranged from 91% initially to 46% at 36 weeks. In contrast, engorgement of controls ranged from 91 to71% and a mortality ranged from 3.5 to 29.8%. These studies show that deltamethrin impregnated collars can protect dogs against Brazilian sand flies for up to eight months. Thus, they should be useful in a program to control human and canine visceral leishmaniasis.