560 resultados para Crabs
Resumo:
Sea anemones are known to contain a wide diversity of biologically active peptides, mostly unexplored according to recent peptidomic and transcriptomic studies. In the present work, the neurotoxic fractions from the exudates of Stichodactyla helianthus and Bunodosoma granulifera were analyzed by reversed-phase chromatography and mass spectrometry. The first peptide fingerprints of these sea anemones were assessed, revealing the largest number of peptide components (156) so far found in sea anemone species, as well as the richer peptide diversity of B. granulifera in relation to S. helianthus. The transcriptomic analysis of B. granulifera, performed by massive cDNA sequencing with 454 pyrosequencing approach allowed the discovery of five new APETx-like peptides (U-AITX-Bg1a-e - including the full sequences of their precursors for four of them), which together with type 1 sea anemone sodium channel toxins constitute a very distinguishable feature of studied sea anemone species belonging to genus Bunodosoma. The molecular modeling of these new APETx-like peptides showed a distribution of positively charged and aromatic residues in putative contact surfaces as observed in other animal toxins. On the other hand, they also showed variable electrostatic potentials, thus suggesting a docking onto their targeted channels in different spatial orientations. Moreover several crab paralyzing toxins (other than U-AITX-Bg1a-e), which induce a variety of symptoms in crabs, were isolated. Some of them presumably belong to new classes of crab-paralyzing peptide toxins, especially those with molecular masses below 2 kDa, which represent the smallest peptide toxins found in sea anemones. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The hermit crab Clibanarius vittatus is a typical organism from intertidal regions being considered as a good bioindicator of tributyltin presence at these environments. Thus this study presents the analytical performance and validation method for TBT quantification in tissues of C. vittatus by gas chromatography with pulsed flame photometric detector (GC-PFPD) after extraction with an apolar solvent (toluene) and Grignard derivatization. The limits of detection of the method (LOD) were 2.0 and 2.8 ng g(-1) for TBT and DBT (dibutyltin), respectively, and its limits of quantification (LOQ) were 6.6 and 8.9 ng g(-1) for TBT and DBT, respectively. The method was applied to samples from Santos Estuary, Sao Paulo State, Brazil. TBT and DBT concentrations ranged from 26.7 to 175.0 ng g(-1) and from 46.2 to 156.0 ng g(-1), respectively. These concentrations are worrisome since toxic effects (such as endocrine disruption) have been reported for other organisms even under lower levels of registred at this study.
Resumo:
Speocarcinus dentatus n. sp. is described from the southwestern Atlantic. The new species can be easily separated from its congeners by a suite of carapace and appendage characters. Speocarcinus Stimpson, 1859, now includes eight extant species, all from the Atlantic or Pacific coasts of the Americas. Additional characters to further differentiate between S. carolinensis Stimpson, 1859, and S. lobatus Guinot, 1969, and between S. granulimanus Rathbun, 1894, and S. spinicarpus Guinot, 1969 are documented. The lectotype of S. granulimanus is first described and a key to the species of Speocarcinus is provided.
Resumo:
The calico box crab Hepatus epheliticus is an abundant species from shallow and continental shelf waters of the Atlantic coast of USA and Mexico. Information about population structure and sexual maturity is absent, even though this crab is caught to be used as bait for the octopus fishery in the Campeche Bank, Mexico. In order to achieve such information, a total of 768 individuals were collected from January to March 2010 through baited traps installed in the Yucatan Peninsula, Mexico. Our results showed that sex ratio is biased towards more males than females (1:0.55), contradicting to that reported in other brachyuran crabs. The absence of ovigerous females suggests that they did not enter into the traps during embryogenesis. Males reached a larger maximum size than females (64.0 +/- 6.15 and 58.4 +/- 5.60 mm carapace width, respectively). The general scheme of growth being positive allometric throughout ontogeny of both sexes. Males presented a transition phase from juveniles to adult corresponding to the puberty moult. The estimation of the onset of functional sexual maturity revealed a steady situation for the population, with 21.5 and 13.8% of males and females, respectively, morphologically immature at the time of catch. This study constitutes the first report on population structure and sexual maturity in a population of the calico box crab H. epheliticus.
Resumo:
The composition and seasonal variation of brachyuran and anomuran species associated with mussel farms were evaluated at Praia da Cocanha, Sao Paulo between May 2007 and February 2008. Nine mussel ropes were sampled at random in each quarter, and 1,208 organisms were identified, comprising five families and 28 species. The most numerous species was the porcellanid Pachycheles laevidactylus (18.5%), followed by the xanthids Acantholobulus schmitti (16.6%), Hexapanopeus paulensis (11.3%), Panopeus americanus (10.2%), and Menippe nodifrons (8.4%). The exotic crab Charybdis hellerii was recorded throughout the study period. The ecological descriptors, except Pielou evenness index, varied significantly over the time. The highest abundance and diversity of the species were recorded during November and February. This pattern was reversed for Berger-Parker dominance, with the lowest values recorded in February. The development of epifauna was correlated with the different stages of the mussel farms, since the mean size of mussels and consequently the abundance of epibiotic organisms and the structural complexity on the mussel ropes increased from May (seeding) until February (harvest). Despite this, the temporal population variations in recruitment patterns of the different epibionts should not be overlooked. The results indicated that the mussel farms provided favorable conditions for the development of these crustacean groups, which could be used in environmental monitoring programs and / or be exploited for the aquarium trade.
Resumo:
The present study aimed to comparatively verify the relation between the hermit crabs and the shells they use in two populations of Loxopagurus loxochelis. Samples were collected monthly from July 2002 to June 2003, at Caraguatatuba and Ubatuba Bay, São Paulo, Brazil. The animals sampled had their sex identified, were weighed and measured; their shells were identified, measured and weighed, and their internal volume determined. To relate the hermit crab's characteristics and the shells' variables, principal component analysis (PCA) and a regression tree were used. According to the PCA analysis, the three gastropod shells most frequently used by L. loxochelis varied in size. The regression tree successfully explained the relationship between the hermit crab's characteristics and the internal volume of the inhabited shell. It can be inferred that the relationship between the morphometry of an individual hermit crab and its shell is not straightforward and it is impossible to explain only on the basis of direct correlations between the body's and the shell's attributes. Several factors (such as the morphometry and the availability of the shell, environmental conditions and inter- and intraspecific competition) interact and seem to be taken into consideration by the hermit crabs when they choose a shell, resulting in the diversified pattern of shell occupancy shown here and elsewhere.
Resumo:
Libinia spinosa H. Milne Edwards in Guérin, 1832 and L. ferreirae Brito Capello, 1871, inhabit very similar environments, and their geographic and bathymetric distributions overlap for about 3000 km along the southwestern Atlantic. Both species are commonly caught in the same haul and differentiating between them can often be difficult. Traditionally, morphological differentiation between L. spinosa and L. ferreirae has been based exclusively on the number of spines along the median, longitudinal line of the carapace and the development of a process at the anterolateral angle of the basal segment of the antenna. Because Libinia spinosa and L. ferreirae share similar numbers of median spines (7 and 6, respectively), and the number of median spines of the carapace and the process at the anterolateral angle of the basal antennal segment are variable, they are of little value in separating these species. It is shown herein that unequivocal identification can be easily achieved based on features of the male and female thoracic sternum, pereiopod dactyli, and infraorbital notch. A lectotype is designated for L. spinosa and its authorship and date are corrected. Libinia gibbosa A. Milne-Edwards, 1878, is demonstrated to be a junior synonym of L. ferreirae. The holotype of L. gibbosa is figured for the first time.
Resumo:
Uca populations have an important functional and structural role in many estuarine ecosystems. These crabs exhibit distinct physiological tolerance to salinity gradients, which may partially explain their heterogeneous distribution. In order to investigate the population structure and distribution of Uca spp. in a tropical estuary, we sampled Uca crabs in replicated 0.75 m2 quadrats at six muddy plain areas during monthly intervals between July and November 2012 in spring tidal conditions. Environmental factors including water temperature, salinity, sediment total organic matter, chlorophyll-a, and granulometry were analyzed. We sampled a total of 2919 individuals distributed in three Uca species (U. uruguayensis, U. thayeri and U. maracoani), from which U. uruguayensis was dominant. The density and biomass of individuals were spatially and temporally heterogeneous. During October and November we found higher Uca spp. densities (71.3 ± 47.3 to 77.6 ± 44,5 ind. 0.75 m-²) and biomass (1.8 ± 1.1 to 2.1 ± 1.0 g 0.75 m-2 AFDW) if compared to the previous months, density (July 55,5± 44,1 August 52,5± 34,9 and September 47,7 ± 25,6 ind. 0,75m-²) and biomass in others months (July 1,0± 0,94 August 1,1 ± 0,72 and September 1,3±0,93 g 0.75 m-2 AFDW ). The same pattern was found for other variables, such as salinity (32 and 34), organic matter (30 and 67%) and chlorophyll-a (89 and 46 μg g-1). In two study areas we found this pattern which suggests that higher Uca productivity and food availability are related. A principal component analysis (PCA) suggests that salinity and granulometry (silt) can influence (60% correspondence) the distribution of U. maracoani. For U. uruguayensis and U. thayeri the PCA suggests chlorophyll-a was important, which is a good indicator for labile organic matter. Our study suggests that the population structure and distribution of Uca species may be regulated by food availability, supporting their utility as biological models for ecosystem monitoring.
Resumo:
[ES] El comportamiento agresivo del cangrejo moro (Grapsus grapsus) ante un modelo de competidor potencial no varió en función del color corporal de este último. No obstante, se observaron cambios en dicho comportamiento en función del tamaño del individuo residente, aumentado la intensidad de los ataques cuanto menores eran las asimetrías en talla
Resumo:
Pharmaceutical residues contaminate aquatic ecosystems as a result of their widespread human and veterinary usage. Since continuously released and not efficiently removed, certain pharmaceuticals exhibit pseudo-persistence thus generating concerns for the health of aquatic wildlife. This work aimed at assessing on mussels Mytilus galloprovincialis, under laboratory conditions, the effects of three pharmaceuticals, carbamazepine (antiepileptic), propranolol (β-blocker) and oxytetracycline (antibiotic), to evaluate if the human-based mode of action of these molecules is conserved in invertebrates. Furthermore, in the framework of the European MEECE Programme, mussels were exposed to oxytetracycline and copper at increasing temperatures, simulating variations due to climate changes. The effects of these compounds were assessed evaluating a battery of biomarkers, the expression of HSP70 proteins and changes in cAMP-related parameters. A decrease in lysosomal membrane stability, induction of oxidative stress, alterations of cAMP-dependent pathway and the induction of defense mechanisms were observed indicating the development of a stress syndrome, and a worsening in mussels health status. Data obtained in MEECE Programme confirmed that the toxicity of substances can be enhanced following changes in temperature. The alterations observed were obtained after exposure to pharmaceuticals at concentrations sometimes lower than those detected in the aquatic environment. Hence, further research is advisable regarding subtle effects of pharmaceuticals on non-target organisms. Furthermore, results obtained during a research stay in the laboratories of Cádiz University (Spain) are presented. The project aimed at measuring possible effects of polluted sediments in Algeciras Bay (Spain) and in Cádiz Bay, by assessing different physiological parameters in caged crabs Carcinus maenas and clams Ruditapes decussatus exposed in situ for 28 days. The neutral red retention assay was adapted to these species and proved to be a sensitive screening tool for the assessment of sediment quality.
Resumo:
Kelp forests are phyletically diverse, structurally complex and highly productive components of cold-water rocky marine coastlines. This paper reviews the conditions in which kelp forests develop globally and where, why and at what rate they become deforested. The ecology and long archaeological history of kelp forests are examined through case studies from southern California, the Aleutian Islands and the western North Atlantic, well-studied locations that represent the widest possible range in kelp forest biodiversity. Global distribution of kelp forests is physiologically constrained by light at high latitudes and by nutrients, warm temperatures and other macrophytes at low latitudes. Within mid-latitude belts (roughly 40-60degrees latitude in both hemispheres) well-developed kelp forests are most threatened by herbivory, usually from sea urchins. Overfishing and extirpation of highly valued vertebrate apex predators often triggered herbivore population increases, leading to widespread kelp deforestation. Such deforestations have the most profound and lasting impacts on species-depauperate systems, such as those in Alaska and the western North Atlantic. Globally urchin-induced deforestation has been increasing over the past 2-3 decades. Continued fishing down of coastal food webs has resulted in shifting harvesting targets from apex predators to their invertebrate prey, including kelp-grazing herbivores. The recent global expansion of sea urchin harvesting has led to the widespread extirpation of this herbivore, and kelp forests have returned in some locations but, for the first time, these forests are devoid of vertebrate apex predators. In the western North Atlantic, large predatory crabs have recently filled this void and they have become the new apex predator in this system. Similar shifts from fish- to crab-dominance may have occurred in coastal zones of the United Kingdom and Japan, where large predatory finfish were extirpated long ago. Three North American case studies of kelp forests were examined to determine their long history with humans and project the status of future kelp forests to the year 2025. Fishing impacts on kelp forest systems have been both profound and much longer in duration than previously thought. Archaeological data suggest that coastal peoples exploited kelp forest organisms for thousands of years, occasionally resulting in localized losses of apex predators, outbreaks of sea urchin populations and probably small-scale deforestation. Over the past two centuries, commercial exploitation for export led to the extirpation of sea urchin predators, such as the sea otter in the North Pacific and predatory fishes like the cod in the North Atlantic. The largescale removal of predators for export markets increased sea urchin abundances and promoted the decline of kelp forests over vast areas. Despite southern California having one of the longest known associations with coastal kelp forests, widespread deforestation is rare. It is possible that functional redundancies among predators and herbivores make this most diverse system most stable. Such biodiverse kelp forests may also resist invasion from non-native species. In the species-depauperate western North Atlantic, introduced algal competitors carpet the benthos and threaten future kelp dominance. There, other non-native herbivores and predators have become established and dominant components of this system. Climate changes have had measurable impacts on kelp forest ecosystems and efforts to control the emission of greenhouse gasses should be a global priority. However, overfishing appears to be the greatest manageable threat to kelp forest ecosystems over the 2025 time horizon. Management should focus on minimizing fishing impacts and restoring populations of functionally important species in these systems.
Resumo:
Dr. Jennifer Mattei and Dr. Mark Beekey lead efforts to monitor and conserve horseshoe crabs by means of Project Limulus. The effort enlists volunteers to help document the movements and mating practices of horseshoe crabs.
Resumo:
Marine brachyuran and anomuran crustaceans are completely absent from the extremely cold (-1.8 °C) Antarctic continental shelf, but caridean shrimps are abundant. This has at least partly been attributed to low capacities for magnesium excretion in brachyuran and anomuran lithodid crabs ([Mg2+]HL = 20-50 mmol/L) compared to caridean shrimp species ([Mg2+]HL = 5-12 mmol/L). Magnesium has an anaesthetizing effect and reduces cold tolerance and activity of adult brachyuran crabs. We investigated whether the capacity for magnesium regulation is a factor that influences temperature-dependent activity of early ontogenetic stages of the Sub-Antarctic lithodid crab Paralomis granulosa. Ion composition (Na+, Mg2+, Ca2+, Cl-, [SO4]2-) was measured in haemolymph withdrawn from larval stages, the first and second juvenile instars (crabs I and II) and adult males and females. Magnesium excretion improved during ontogeny, but haemolymph sulphate concentration was lowest in the zoeal stages. Neither haemolymph magnesium concentrations nor Ca2+:Mg2+ ratios paralleled activity levels of the life stages. Long-term (3 week) cold exposure of crab I to 1 °C caused a significant rise of haemolymph sulphate concentration and a decrease in magnesium and calcium concentrations compared to control temperature (9 °C). Spontaneous swimming activity of the zoeal stages was determined at 1, 4 and 9 °C in natural sea water (NSW, [Mg2+] = 51 mmol/L) and in sea water enriched with magnesium (NSW + Mg2+, [Mg2+] = 97 mmol/L). It declined significantly with temperature but only insignificantly with increased magnesium concentration. Spontaneous velocities were low, reflecting the demersal life style of the zoeae. Heart rate, scaphognathite beat rate and forced swimming activity (maxilliped beat rate, zoea I) or antennule beat rate (crab I) were investigated in response to acute temperature change (9, 6, 3, 1, -1 °C) in NSW or NSW + Mg2+. High magnesium concentration reduced heart rates in both stages. The temperature-frequency curve of the maxilliped beat (maximum: 9.6 beats/s at 6.6 °C in NSW) of zoea I was depressed and shifted towards warmer temperatures by 2 °C in NSW + Mg2+, but antennule beat rate of crab I was not affected. Magnesium may therefore influence cold tolerance of highly active larvae, but it remains questionable whether the slow-moving lithodid crabs with demersal larvae would benefit from an enhanced magnesium excretion in nature.