656 resultados para Corrosion-wear
Resumo:
This paper describes an experimental investigation of the behaviour of corroded reinforced concrete beams. These have been stored in a chloride environment for a period of 26 years under service loading so as to be representative of real structural and environmental conditions. The configuration and the widths of the cracks in the two seriously corroded short-span beams were depicted carefully, and then the beams were tested until failure by a three-point loading system. Another two beams of the same age but without corrosion were also tested as control specimens. A short span arrangement was chosen to investigate any effect of a reduction in the area and bond strength of the reinforcement on shear capacity. The relationship of load and deflection was recorded so as to better understand the mechanical behaviour of the corroded beams, together with the slip of the tensile bars. The corrosion maps and the loss of area of the tensile bars were also described after having extracted the corroded bars from the concrete beams. Tensile tests of the main longitudinal bars were also carried out. The residual mechanical behaviour of the beams is discussed in terms of the experimental results and the cracking maps. The results show that the corrosion of the reinforcement in the beams induced by chloride has a very important effect on the mechanical behaviour of the short-span beams, as loss of cross-sectional area and bond strength have a very significant effect on the bending capacity.
Resumo:
Abstract This work addresses the problems of effective in situ measurement of the initiation or the rate of steel corrosion in reinforced concrete structures through the use of optical fiber sensor systems. By undertaking a series of tests over prolonged periods, coupled with acceleration of corrosion, the performance of fiber Bragg grating-based sensor systems attached to high-tensile steel reinforcement bars (ldquorebarsrdquo), and cast into concrete blocks was determined, and the results compared with those from conventional strain gauges where appropriate. The results show the benefits in the use of optical fiber networks under these circumstances and their ability to deliver data when conventional sensors failed.
Wear paths produced by individual hip-replacement patients— A large-scale, long-term follow-up study
Resumo:
Wear particle accumulation is one of the main contributors to osteolysis and implant failure in hip replacements. Altered kinematics produce significant differences in wear rates of hip replacements in simulator studies due to varying degrees of multidirectional motion. Gait analysis data from 153 hip-replacement patients 10-years post-operation were used to model two- and three-dimensional wear paths for each patient. Wear paths were quantified in two dimensions using aspect ratios and in three dimensions using the surface areas of the wear paths, with wear-path surface area correlating poorly with aspect ratio. The average aspect ratio of the patients wear paths was 3.97 (standard deviation ¼ 1.38), ranging from 2.13 to 10.86. Sixty percent of patients displayed aspect ratios between 2.50 and 3.99. However, 13% of patients displayed wear paths with aspect ratios 45.5, which indicates reduced multidirectional motion. The majority of total hip replacement (THR) patients display gait kinematics which produce multidirectional wear paths, but a significant minority display more linear paths.
The influence of wear paths produced by hip replacement patients during normal walking on wear rates
Resumo:
Variation in wear paths is known to greatly affect wear rates in vitro, with multidirectional paths producing much greater wear than unidirectional paths. This study investigated the relationship between multidirectional motion at the hip joint, as measured by aspect ratio, sliding distance, and wear rate for 164 hip replacements. Kinematic input from three-dimensional gait analysis was used to determine the wear paths. Activity cycles were determined for a subgroup of 100 patients using a pedometer study, and the relationship between annual sliding distance and wear rate was analyzed. Poor correlations were found between both aspect ratio and sliding distance and wear rate for the larger group and between annual sliding distance and wear rate for the subgroup. However, patients who experienced a wear rate <0.08 mm/year showed a strong positive correlation between the combination of sliding distance, activity levels, and aspect ratio and wear rate (adjusted r2?=?55.4%). This group may represent those patients who experience conditions that most closely match those that prevail in simulator and laboratory tests. Although the shape of wear paths, their sliding distance, and the number of articulation cycles at the hip joint affect wear rates in simulator studies, this relationship was not seen in this clinical study. Other factors such as lubrication, loading conditions and roughness of the femoral head may influence the wear rate.
Resumo:
Electroless nickel (EN) coatings are recognised for their hardness and wear resistance in automotive and aerospace industries. In this work, electroless Ni–P coatings were deposited on aluminium alloy substrate LM24 (Al–9 wt.% Si alloy) and the effect of post treatment on the wear resistance was studied. The post treatments included heat treatment and lapping with two different surface textures. Scanning electron microscopy (SEM), energy dispersive spectrometry (EDS), X-ray diffraction (XRD) and micro-abrasion tester were used to analyse morphology, structure and abrasive wear resistance of the coatings. Post heat treatment significantly improved the coating density and structure, giving rise to enhanced hardness and wear resistance. Microhardness of electroless Ni–P coatings with thickness of about 15 μm increased due to the formation of Ni3P after heat treatment.