927 resultados para Consensual mechanisms of dispute resolution


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The cellular mechanisms through which adult rat skeletal muscle protein is regulated during resistance exercise and training was investigated. A model of non-voluntary resistance exercise was described which involves the electrically-stimulated contraction of the lower leg muscles of anesthetized rats against a weighted pulley-bar. Muscle protein synthesis rates were measured by in vivo constant infusion of $\sp3$H-leucine following a single bout of resistance exercise. Specific messenger RNA levels were determined by dot-blot hybridization analysis using $\sp{32}$P-labelled DNA probes after a single bout and multiple bouts of phasic training. The effects of phasic training on increasing skeletal muscle mass was assessed. Between 12 and 36 hours following a single resistance exercise bout (24-192 contractions), total mixed and myofibril protein synthesis rates were significantly increase (32%-65%) after concentric (gastrocnemius m.) and eccentric (tibialis anterior m.) contractions. Eccentric contractions had greater effects on myofibril synthesis with more prolonged increases in synthesis rates. Lower numbers of eccentric than concentric contractions were required to increase synthesis. Cellular RNA was increased after exercise but the relative levels of skeletal $\alpha$-actin and cytochrome c mRNAs were unchanged. Since increases in synthesis rates exceeded increases in RNA, post-transcriptional mechanisms may be primarily responsible for increased protein synthesis after a resistance exercise bout. After 10-22 weeks of phasic eccentric resistance training, muscle enlargement (16%-30%) was produced in the tibialis anterior m. after all training paradigms examined. In contrast, gastrocnemius m. enlargement after phasic concentric training occurred after moderate (24/bout) but not after high (192/bout) repetition training. The absence of muscle growth in the gastrocnemius m. after high repetition training despite increased synthesis rates after the initial bout and RNA and possibly mRNA accumulation during training suggests a role for post-translational mechanisms (protein degradation) in the control of muscle growth in the gastrocnemius m. It is concluded that muscle protein during resistance exercise and training is regulated at several cellular levels. The particular response may be influenced by the exercise intensity and duration, the training frequency and the type of contractile work (eccentric vs. concentric) performed. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The recognition of the skin as an immunocompetent organ has focused attention on the complex interaction between ultraviolet radiation and the immune system. How UV-radiation, which hardly penetrates past the epidermis, induces systemic immune suppression is not entirely clear. We propose that suppressive cytokines, released by UV-irradiated keratinocytes, play a role in the induction of immune suppression. Injecting supernatants from UV-exposed murine keratinocytes into mice impairs their ability to mount a delayed-type hypersensitivity response against allogeneic histocompatibility antigens. We tested the hypothesis that the down regulation of the immune response by UV is precipitated by the release of IL-10 after keratinocytes are UV-irradiated. After UV exposure IL-10 mRNA was upregulated. Western analysis indicated immunoreactive IL-10 was secreted by UV-exposed keratinocytes. The addition of supernatants from UV-irradiated keratinocytes to Th1 clones diminished their IFN production, whereas the addition of supernatants from normal keratinocytes had no suppressive effect on IFN production. Furthermore, treating supernatants from UV-irradiated keratinocytes with anti-IL-10 antibodies blocked the induction of immune suppression. To determine if IL-10 was responsible for the immunosuppression seen after total-body UV irradiation, UV-exposed mice were treated with anti-IL-10 antibodies. Treating UV-irradiated mice with anti-IL-10 reversed the induction of immune suppression. These findings suggest that keratinocyte-derived IL-10 was mediating UV-induced suppression in vivo. We also tested the hypothesis that UV-induced suppressor cells are Th2 cells. Mice were injected with spleen cells from either normal or UV-exposed donor mice immunized with alloantigen. At the time of spleen cell infusion, the recipient mice were then resensitized. Spleen cells from UV-exposed mice suppressed DTH. Mice treated identically and injected with anti-IL-10 antibodies were able to generate a DTH response. Taken together these data suggest that the suppressor cells that are induced by UV radiation are Th2 cells which mediate their suppressive effect by release of IL-10. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The $\beta$-adrenergic receptor ($\beta$AR), which couples to G$\sb{\rm s}$ and activates adenylylcyclase, has been a prototype for studying the activation and desensitization of G-protein-coupled receptors. The main objective of the present study is to elucidate the molecular mechanisms of protein kinase-mediated desensitization and internalization of the $\beta$AR.^ Activation of cAPK or PKC causes a rapid desensitization of $\beta$AR stimulation of adenylylcyclase in L cells, which previous studies suggest involves the cAPK/PKC consensus phosphorylation site in the third intracellular loop of the $\beta$AR, RRSSK$\sp{263}$. To determine the role of the individual serines in the cAPK- and PKC-meditated desensitizations, wild type (WT) and mutant $\beta$ARs containing the substitutions, Ser$\sp{261} \to$ A, Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and Ser$\sp{261/262} \to$ A, were constructed and stably transfected into L cells. The cAPK-mediated desensitization was decreased 70-80% by the Ser$\sp{262} \to$ A, Ser$\sp{262} \to$ D, and the Ser$\sp{261/262} \to$ A mutations, but was not altered by the Ser$\sp{261} \to$ A substitution, demonstrating that Ser$\sp{262}$ was the primary site of the cAPK-induced desensitization. The PMA/PKC-induced desensitization was unaffected by either of the single serine to alanine substitutions, but was reduced 80% by the double serine to alanine substitution, suggesting that either serine was sufficient to confer the PKC-mediated desensitization. Coincident stimulation of cAPK and PKC caused an additive desensitization which was significantly reduced (80%) only by the double substitution mutation. Quantitative evaluation of the coupling efficiencies and the GTP-shift of the WT and mutant receptors demonstrated that only one of the mutants, Ser$\sp{262} \to$ A, was partially uncoupled. The Ser$\sp{262} \to$ D mutation did not significantly uncouple, demonstrating that introducing a negative charge did not appear to mimic the desensitized state of the receptor.^ To accomplish the in vivo phosphorylation of the $\beta$AR, we used two epitope-modified $\beta$ARs, hemagglutinin-tagged $\beta$AR (HA-$\beta$AR) and 6 histidine-tagged $\beta$AR (6His-$\beta$AR), for a high efficiency purification of the $\beta$AR. Neither HA-$\beta$AR nor 6His-$\beta$AR altered activation and desensitization of the $\beta$AR significantly as compared to unmodified wild type $\beta$AR. 61% recovery of ICYP-labeled $\beta$AR was obtained with Ni-NTA column chromatography.^ The truncation 354 mutant $\beta$AR(T354), lacking putative $\beta$ARK site(s), displayed a normal epinephrine stimulation of adenylylcyclase. Although 1.0 $\mu$M epinephrine induced 60% less desensitization in T354 as compared to wild type $\beta$AR, 1.0 $\mu$M epinephrine-mediated desensitization in T354 was 35% greater than PGE$\sb1$-mediated desensitization, which is essentially identical in both WT and T354. These results suggested that sequences downstream of residue 354 may play a role in homologous desensitization and that internalization may be attributed to the additional desensitization besides the cAMP mechanism in T354 $\beta$AR. (Abstract shortened by UMI.) ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

At the fore-front of cancer research, gene therapy offers the potential to either promote cell death or alter the behavior of tumor-cells. One example makes use of a toxic phenotype generated by the prodrug metabolizing gene, thymidine kinase (HSVtk) from the Herpes Simplex Virus. This gene confers selective toxicity to a relatively nontoxic prodrug, ganciclovir (GCV). Tumor cells transduced with the HSVtk gene are sensitive to 1-50 $\mu$M GCV; normal tissue is insensitive up to 150-250 $\mu$M GCV. Utilizing these different sensitivities, it is possible to selectively ablate tumor cells expressing this gene. Interestingly, if a HSVtk$\sp+$ expressing population is mixed with a HSVtk$\sp-$ population at high density, all the cells are killed after GCV administration. This phenomenon for killing all neighboring cells is termed the "bystander effect", which is well documented in HSVtk$\sp-$ GCV systems, though its exact mechanism of action is unclear.^ Using the mouse colon carcinoma cell line CT26, data are presented supporting possible mechanisms of "bystander effect" killing of neighboring CT26-tk$\sp-$cells. A major requirement for bystander killing is the prodrug GCV: as dead or dying CT26tk$\sp+$ cells have no toxic effect on neighboring cells in its absence. In vitro, it appears the bystander effect is due to transfer of toxic GCV-metabolites, through verapamil sensitive intracellular-junctions. Additionally, possible transfer of the HSVtk enzyme to bystander cells after GCV addition, may play a role in bystander killing. A nude mouse model suggests that in a 50/50 (tk$\sp+$/tk$\sp-$) mixture of CT26 cells the bystander eradication of tumors does not involve an immune component. Additionally in a possible clinical application, the "bystander effect" can be directly exploited to eradicate preexisting CT26 colon carcinomas in mice by intratumoral implantation of viable or lethally irradiated CT26tk$\sp+$ cells and subsequent GCV administration. Lastly, an application of this toxic phenotype gene to a clinical marking protocol utilizing a recombinant adenoviral vector carrying the bifunctional protein GAL-TEK to eradicate spontaneously-arisen or vaccine-induced fibrosarcomas in cats is demonstrated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prostate cancer represents the most commonly diagnosed malignancies in American men and is the second leading cause of male cancer deaths. The overall objectives of this research were designed to understand the cellular and molecular mechanisms of prostatic carcinoma growth and progression. This dissertation was divided into two major parts: (1) to clone and characterize soluble factor(s) associated with bone that may mediate prostatic carcinoma growth and progression; (2) to investigate the roles of extracellular matrix in prostatic carcinogenesis.^ The propensity of prostate cancer cells to metastasize to the axial skeleton and the subsequent osteoblastic reactions observed in the bone indicate the possible reciprocal cellular interaction between prostate cancer cells and the bone microenvironment. To understand the molecular and cellular basis of this interaction, I focused on the identification and cloning of soluble factor(s) from bone stromal cells that may exert direct mitogenic action on cultured prostate cells. A novel BPGF-1 gene expressed specifically by bone and male accessory sex organs (prostate, seminal vesicles, and coagulating gland) was identified and cloned.^ The BPGF-1 was identified and cloned from a cDNA expression library prepared from a human bone stromal cell line, MS. The conditioned medium (CM) of this cell line contains mitogenic materials that induce human prostate cancer cell growth both in vivo and in vitro. The cDNA expression library was screened by an antibody prepared against the mitogenic fraction of the CM.^ The cloned BPGF-1 cDNA comprises 3171 nucleotides with a single open reading frame of 1620 nucleotides encoding 540 amino acids. The BPGF-1 gene encodes two transcripts (3.3 and 2.5 kb) with approximately equal intensity in human cells and tissues, but only one transcript (2.5 kb) in rat and mouse tissues. Southern blot analysis of human genomic DNA revealed a single BPGF-1 gene. The BPGF-1 gene is expressed predominantly in bone and seminal vesicles, but at a substantially lower level in prostate. Polyclonal antibodies generated from synthetic peptides that correspond to the nucleotide sequences of the cloned BPGF-1 cDNA reacted with a putative BPGF-1 protein with an apparent molecular weight of 70 kDa. The conditioned media isolated from COS cells transfected with BPGF-1 cDNA stimulated the proliferation and increased the anchorage-independent growth of prostate epithelial cells. These findings led us to hypothesize that BPGF-1 expression in relevant organs, such as prostate, seminal vesicles, and bone, may lead to local prostate cancer growth, metastasis to the seminal vesicles, and subsequently dissemination to the skeleton.^ To assess the importance of extracellular matrix in prostatic carcinogenesis, the role of extracellular matrix in induction of rat prostatic carcinoma growth in vivo was evaluated. NbE-1, a nontumorigenic rat prostatic epithelial cell line, was induced to form carcinoma in athymic nude hosts by coinjecting them with Matrigel and selected extracellular matrix components. Induction of prostatic tumor formation by laminin and collagen IV was inhibited by their respective antibodies. Prostatic epithelial cells cloned from the tumor tissues were found to form tumors in athymic nude hosts in the absence of exogenously added extracellular matrix. These results suggest that extracellular matrix induce irreversibly prostatic epithelial cells that behave distinctively different from the parental prostatic epithelial cell line. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

$\rm Ca\sp{2+}$-dependent exposure of an N-terminal hydrophobic region in troponin C (TnC) is thought to be important for the regulation of contraction in striated muscle. To study these conformational changes in cardiac troponin (cTnC), the $\varepsilon$C and $\varepsilon$H chemical shifts for all 10 Met residues in cTnC were sequence-specific assigned on NMR spectra using a combination of two dimensional NMR techniques and site-directed mutagenesis. The assigned methyl-Met chemical shifts were used as structural markers to monitor conformational changes induced by $\rm Ca\sp{2+}.$ The results showed that binding of $\rm Ca\sp{2+}$ to the regulatory site in the N-domain induced large changes in the $\varepsilon$H and $\varepsilon$C chemical shifts of Met 45, Met 80, Met 81 in the predicted N-terminal hydrophobic region, but had no effect on the chemical shifts of Met residues located in the C-domain. These results suggest that the $\rm Ca\sp{2+}$-dependent functions of cTnC are mainly through N-terminal domain of cTnC.^ To further define the molecular mechanism by which TnC regulates muscle contraction, single Cys residues were engineered at positions 45, 81, 84 or 85 in the N-terminal hydrophobic region of cTnC to provide sites for attachment of specific blocking groups. Blocking groups were coupled to these Cys residues in cTnC mutants and the covalent adducts were tested for activity in TnC-extracted myofibrils. Covalent modification of cTnC(C45) had no effect on maximal myofibril ATPase activity. Greatly decreased myofibril ATPase activity resulted when the peptide or biotin was conjugated to residue 81 in cTnC(C81), while less inhibition resulted from covalent modification of cTnC(C84) or cTnC(C85). The results suggest that limited sites of the N-terminal hydrophobic region in cTnC are important for transducing the $\rm Ca\sp{2+}$ signal to troponin I (TnI) and are sensitive to modification, while other regions are less important or can adapt to steric hindrances introduced by bulky blocking groups.^ Although the exposed TnI interaction site in the N-terminal hydrophobic region of TnC is crucial for function of TnC, other regions in the N-domain of TnC may also participate in transducing the $\rm Ca\sp{2+}$ signal and conferring the maximal activation of actomyosin ATPase. The interactions between the B-/C-helices of cTnC and cTnI were characterized using a combination of site-directed mutagenesis, fluorescence and covalent modification. The results suggest that the $\rm Ca\sp{2+}$-dependent interactions of the B-/C-helices of cTnC with TnI may be required for the maximal activation of muscle contraction. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Type II collagen is a major chondrocyte-specific component of the cartilage extracellular matrix and it represents a typical differentiation marker of mature chondrocytes. In order to delineate cis-acting elements of the mouse pro$\alpha1$(II) collagen gene that control chondrocyte-specific expression in intact mouse embryos, we generated transgenic mice harboring chimeric constructions in which varying lengths of the promoter and intron 1 sequences were linked to a $\beta$-galactosidase reporter gene. A construction containing a 3000-bp promoter and a 3020-bp intron 1 fragment directed high levels of $\beta$-galactosidase expression specifically to chondrocytes. Successive deletions of intron 1 delineated a 48-bp fragment which targeted $\beta$-galactosidase expression to chondrocytes with the same specificity as the larger intron 1 fragment. When the Col2a1 promoter was replaced with a minimal $\beta$-globin promoter, the 48-bp intron 1 sequence was still able to target expression of the transgene to chondrocytes, specifically. Therefore a 48-bp intron 1 DNA segment of the mouse Col2a1 gene contains the necessary information to confer high-level, temporally correct, chondrocyte expression to a reporter gene in intact mouse embryos and that Col2a1 promoter sequences are dispensable for chondrocyte expression. Nuclear proteins present selectively in mouse primary chondrocytes and rat chondrosarcoma cells bind to the three putative HMG (High-Mobility-Group) domain protein binding sites in this 48-bp sequence and the chondrocyte-specific proteins likely bind the DNA through minor groove. Together, my results indicate that a 48-bp sequence in Col2a1 intron 1 controls chondrocyte-specific expression in vivo and suggest that chondrocytes contain specific nuclear proteins involved in enhancer activity. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Non-Hodgkin's Lymphoma (NHLs) are neoplasms of the immune system. Currently, less than 1% of the etiology of the 22,000 newly diagnosed lymphoma cases in the U.S.A. every year is known. This disease has a significant prevalence and high mortality rate. Cell growth in lymphomas has been shown to be an important parameter in aggressive NHL when establishing prognosis, as well as an integral part in the pathophysiology of the disease process. While many aggressive B cell NHLs respond initially to chemotherapeutic regimens such as CHOP-bleo (adriamycin, vincristine and bleomycin) etc., relapse is common, and the patient is then often refractory to further salvage treatment regimens.^ To assess their potential to inhibit aggressive B cell NHLs and induce apoptosis (also referred to as programmed cell death (PCD)), it was proposed to utilize the following biological agents-liposomal all-trans retinoic acid (L-ATRA) which is a derivative of Vitamin A in liposomes and Vitamin D3. Preliminary evidence indicates that L-ATRA may inhibit cell growth in these cells and may induce PCD as well. Detailed studies were performed to understand the above phenomena by L-ATRA and Vitamin D3 in recently established NHL-B cell lines and primary cell cultures. The gene regulation involved in the case of L-ATRA was also delineated. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Chronic lymphocytic leukemia (CLL) is an incurable disease characterized by the accumulation of terminally differentiated, mature B cells that do not progress beyond the G1 stage of cell cycle, suggesting that these cells possess intrinsic defects in apoptosis. Treatment relies heavily on chemotherapy (primarily nucleoside analogs and glucocorticoids) that may initially be effective in patients, but ultimately give rise to refractory, untreatable disease. The purpose of this study was to determine whether key components of the apoptotic machinery were intact in CLL lymphocytes, especially in patients refractory to therapy. ^ Activation of proteases has been shown to be at the core of the apoptotic pathway and this work demonstrates that protease activation is required for glucocorticoid and nucleoside analog-induced apoptosis in CLL cells. Inhibitors of serine proteases as well as caspase inhibitors blocked induced DNA fragmentation, and a peptide inhibitor of the nuclear scaffold (NS) protease completely suppressed both induced and spontaneous apoptosis. However, the NS protease inhibitor actually promoted several pro-apoptotic events, such as caspase activation, exposure of surface phosphatidylserine, and loss of mitochondrial membrane potential. These results suggested that the NS protease may interact with the apoptotic program in CLL cells at two separate points. ^ In order to further investigate the role of the NS protease in CLL, patient isolates were treated with proteasome inhibitors because of previous results suggesting that the ISIS protease might be a β subunit of the proteasome. Proteasome inhibitors induced massive DNA fragmentation in every patient tested, even in those resistant to the effects of glucocorticoid and nucleoside analogs in vitro. Several other features of apoptosis were also promoted by the proteasome inhibitor, including mitochondrial alterations such as release of cytochrome c and drops in mitochondrial membrane potential. Proteasome inhibitor-induced apoptosis was associated with inhibition of NFκB, a proteasome-regulated transcription factor that has been implicated in the suppression of apoptosis in a number of systems. The NS protease inhibitor also caused a decrease in active NFκB, suggesting that the proapoptotic effects of this agent might be due to depletion of NFκB. ^ Given these findings, the role of NFκB, in conferring survival in CLL was investigated. Glucocorticoid hormone treatment was shown to cause decreases in the activity of the transcription factor, while phorbol dibutyrate, which blocks glucocorticoid-induced DNA fragmentation, was capable of upregulating NFκB. Compellingly, introduction of an undegradable form of the constitutive NFκB inhibitor, IκB, caused DNA fragmentation in several patient isolates, some of which were resistant to glucocorticoid in vitro. Transcription of anti-apoptotic proteins by NFκB was postulated to be responsible for its effects on survival, but Bcl-2 levels did not fluctuate with glucocorticoid or proteasome inhibitor treatment. ^ The in vitro values generated from these studies were organized into a database containing numbers for over 250 patients. Correlation of relevant clinical parameters revealed that levels of spontaneous apoptosis in vitro differ significantly between Rai stages. Importantly, in vitro resistance to nucleoside analogs or glucocorticoids predicted resistance to chemotherapy in vivo, and inability to achieve remission. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Steroid hormones regulate target cell function via quantitative and qualitative changes in RNA and protein synthesis. In the testis, androgens are known to play an important role in the regulation of spermatogenesis. The Sertoli cell (SC), whose function is thought to be supportive to the developing germ cell, has been implicated as an androgen target cell. Although cytoplasmic androgen receptors and chromatin acceptor sites for androgen-receptor complexes have been found in SC, effects on RNA synthesis have not previously been demonstrated. In this study, SC RNA synthetic activity was characterized and the effect of testosterone on SC nuclear transcriptional activity in vitro assessed. SC exhibited two fold increases in RNA and ribonucleotide pool concentrations during sexual maturation. These changes appeared to correlate with a previously observed increase in protein concentration per cell over an age span of 15-60 days. Following incubation with ('3)H-uridine, SC from older animals incorporated more label into RNA than SC from younger animals. Since the relative concentration of cytidine nucleotides was higher in SC from older rats, the age-related increase in tritium incorporation may reflect an associated increase in incorporation of ('3)H-CMP into RNA. Alternatively, the enhanced labeling may be the result of either a change in the base composition of the RNA resulting in a higher proportion of CMP and UMP in the RNA, or compartmentalization of the nucleotide pools. The physiologic consequences of these maturational alterations of nucleotide pools remains to be elucidated. RNA polymerase activities were characterized in intact nuclei obtained from cultured rat SC. (alpha)-Amanitin resistant RNA polymerase I+III activity was identical when measured in low or high ionic strength (0.05 M or 0.25 M ammonium sulfate (AS)) in the presence of MnCl(,2) or MgCl(,2), with a divalent cation optimum of 1.6 mM. RNA polymerase II was most active in 0.25 M AS and 1.6 mM MnCl(,2). The apparent Km of RNA polymerase II for UTP was 0.016 mM in 0.05 M AS and 0.037 mM in 0.25 M AS. The apparent Km values for total polymerase activity was 0.008 mM and 0.036 mM at low and high ionic strenghts, respectively. These data indicate that Sertoli cell RNA polymerase activities have catalytic properties characteristic of eukaryotic polymerase activities in general. In the presence of 21 (mu)M testosterone, RNA polymerase II activity increased two fold at 15 minutes, then declined but was still elevated over control values six hours after androgen addition. Polymerase I+III activity was not greatly affected by testosterone. The stimulation of polymerase II measured at 15 minutes was dose-dependent, with a maximum at 0.53 nM and no further stimulation up to 10('-5) M (ED(,50) = 0.25 nM testosterone), and was androgen specific. The results of preliminary RNA isolation and characterization experiments suggested that the synthesis of several species of RNA was enhanced by testosterone administration. These findings have great potential importance since they represent the first demonstration of a direct effect of androgens on the transcriptional process in the Sertoli cell. Furthermore, the results of these studies constitute further evidence that the Sertoli cell is a target for androgen action in the testis. ^

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Between 2004 and 2007, NGOs, community based organisations and private investors promoted jatropha in Kenya with the aim of generating additional income and producing biofuel for rural development. By 2008 it became gradually evident that jatropha plantations (both mono- and intercropping) are uneconomical and risky due to competition for land and labour with food crops. Cultivation of jatropha hedges was found to have better chances of economic success and to present only little risks for the adopting farmers. Still, after 2008 a number of farmers went on adopting jatropha in plots rather than as hedges. It is hypothesised that lack of awareness about the low economic prospects of jatropha plantations was the main reason for continued adoption, and that smallholder farmers with higher resource endowments mainly ventured into its cultivation. In this study we provide an empirical basis for understanding the role of households' capital assets in taking up new livelihood strategies by smallholder farmers in three rural districts in Kenya. For that purpose, we assess the motivation and enabling factors that led to the adoption of jatropha as a new livelihood strategy, as well as the context in which promotion and adoption took place. A household survey was conducted in 2010, using a structured questionnaire, to collect information on household characteristics and capital asset endowment. Data were analysed using descriptive statistics and non-parametric statistical tests. We established that access to additional income and own energy supply were the main motivation for adoption of jatropha, and that financial capital assets do not necessarily have a positive influence on adoption as hypothesised. Further, we found that the main challenges that adopting farmers faced were lack of access to information on good management practices and lack of a reliable market. We conclude that continued adoption of on-farm jatropha after 2008 is a result of lacking awareness about the low economic value of this production type. We recommend abandoning on-farm production of jatropha until improved seed material and locally adapted agronomic knowledge about jatropha cultivation becomes available and its production becomes economically competitive.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Cancers of the reproductive system are among the leading causes of mortality in women in the United States. While both genetic and environmental factors have been implicated in their etiology, the extent of the contribution of environmental factors to human diseases remains controversial. To better address the role of environmental exposures in cancer etiology, there has been an increasing focus on the development of nontraditional, environmentally relevant models. Our research involves the development of one such model, Gonadal tumors have been described in the softshell clam (Mya arenaria) in Maine and the hardshell clam (Mercenaria spp.) from Florida. Prevalence of these tumors is as high as 40% in some populations in eastern Maine and 60% in Some areas along the Indian River in Florida. The average tumor prevalence in Maine and Florida is approximately 20 and 11%, respectively. An association has been suggested between the use of herbicides and the incidence of gonadal tumors in the softshell clam in Maine. The role of environmental exposures in the development of the tumors in Mercenaria in Florida is unknown, however, there is evidence that genetic factors may contribute to its etiology. Epidemiologic studies of human populations in these same areas show a higher than average mortality rate due to cancers of the reproductive system in women, including both ovarian and breast career. The relationship, if any, among these observations is unknown, Our studies on the molecular basis of this disease in clams may provide additional information on environmental exposures and their possible link to cancer in clams and other organisms, including humans.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We review our recent work on protein-ligand interactions in vitamin transporters of the Sec-14-like protein. Our studies focused on the cellular-retinaldehyde binding protein (CRALBP) and the alpha-tocopherol transfer protein (alpha-TTP). CRALBP is responsible for mobilisation and photo-protection of short-chain cis-retinoids in the dim-light visual cycle or rod photoreceptors. alpha-TTP is a key protein responsible for selection and retention of RRR-alpha-tocopherol, the most active isoform of vitamin E in superior animals. Our simulation studies evidence how subtle chemical variations in the substrate can lead to significant distortion in the structure of the complex, and how these changes can either lead to new protein function, or be used to model engineered protein variants with tailored properties. Finally, we show how integration of computational and experimental results can contribute in synergy to the understanding of fundamental processes at the biomolecular scale.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Brain electric mechanisms of temporary, functional binding between brain regions are studied using computation of scalp EEG coherence and phase locking, sensitive to time differences of few milliseconds. However, such results if computed from scalp data are ambiguous since electric sources are spatially oriented. Non-ambiguous results can be obtained using calculated time series of strength of intracerebral model sources. This is illustrated applying LORETA modeling to EEG during resting and meditation. During meditation, time series of LORETA model sources revealed a tendency to decreased left-right intracerebral coherence in the delta band, and to increased anterior-posterior intracerebral coherence in the theta band. An alternate conceptualization of functional binding is based on the observation that brain electric activity is discontinuous, i.e., that it occurs in chunks of up to about 100 ms duration that are detectable as quasi-stable scalp field configurations of brain electric activity, called microstates. Their functional significance is illustrated in spontaneous and event-related paradigms, where microstates associated with imagery- versus abstract-type mentation, or while reading positive versus negative emotion words showed clearly different regions of cortical activation in LORETA tomography. These data support the concept that complete brain functions of higher order such as a momentary thought might be incorporated in temporal chunks of processing in the range of tens to about 100 ms as quasi-stable brain states; during these time windows, subprocesses would be accepted as members of the ongoing chunk of processing.