804 resultados para Computational learning theory


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both Semi-Supervised Leaning and Active Learning are techniques used when unlabeled data is abundant, but the process of labeling them is expensive and/or time consuming. In this paper, those two machine learning techniques are combined into a single nature-inspired method. It features particles walking on a network built from the data set, using a unique random-greedy rule to select neighbors to visit. The particles, which have both competitive and cooperative behavior, are created on the network as the result of label queries. They may be created as the algorithm executes and only nodes affected by the new particles have to be updated. Therefore, it saves execution time compared to traditional active learning frameworks, in which the learning algorithm has to be executed several times. The data items to be queried are select based on information extracted from the nodes and particles temporal dynamics. Two different rules for queries are explored in this paper, one of them is based on querying by uncertainty approaches and the other is based on data and labeled nodes distribution. Each of them may perform better than the other according to some data sets peculiarities. Experimental results on some real-world data sets are provided, and the proposed method outperforms the semi-supervised learning method, from which it is derived, in all of them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concept drift, which refers to non stationary learning problems over time, has increasing importance in machine learning and data mining. Many concept drift applications require fast response, which means an algorithm must always be (re)trained with the latest available data. But the process of data labeling is usually expensive and/or time consuming when compared to acquisition of unlabeled data, thus usually only a small fraction of the incoming data may be effectively labeled. Semi-supervised learning methods may help in this scenario, as they use both labeled and unlabeled data in the training process. However, most of them are based on assumptions that the data is static. Therefore, semi-supervised learning with concept drifts is still an open challenging task in machine learning. Recently, a particle competition and cooperation approach has been developed to realize graph-based semi-supervised learning from static data. We have extend that approach to handle data streams and concept drift. The result is a passive algorithm which uses a single classifier approach, naturally adapted to concept changes without any explicit drift detection mechanism. It has built-in mechanisms that provide a natural way of learning from new data, gradually "forgetting" older knowledge as older data items are no longer useful for the classification of newer data items. The proposed algorithm is applied to the KDD Cup 1999 Data of network intrusion, showing its effectiveness.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In the pattern recognition research field, Support Vector Machines (SVM) have been an effectiveness tool for classification purposes, being successively employed in many applications. The SVM input data is transformed into a high dimensional space using some kernel functions where linear separation is more likely. However, there are some computational drawbacks associated to SVM. One of them is the computational burden required to find out the more adequate parameters for the kernel mapping considering each non-linearly separable input data space, which reflects the performance of SVM. This paper introduces the Polynomial Powers of Sigmoid for SVM kernel mapping, and it shows their advantages over well-known kernel functions using real and synthetic datasets.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Within cognitive neuroscience, computational models are designed to provide insights into the organization of behavior while adhering to neural principles. These models should provide sufficient specificity to generate novel predictions while maintaining the generality needed to capture behavior across tasks and/or time scales. This paper presents one such model, the Dynamic Field Theory (DFT) of spatial cognition, showing new simulations that provide a demonstration proof that the theory generalizes across developmental changes in performance in four tasks—the Piagetian A-not-B task, a sandbox version of the A-not-B task, a canonical spatial recall task, and a position discrimination task. Model simulations demonstrate that the DFT can accomplish both specificity—generating novel, testable predictions—and generality—spanning multiple tasks across development with a relatively simple developmental hypothesis. Critically, the DFT achieves generality across tasks and time scales with no modification to its basic structure and with a strong commitment to neural principles. The only change necessary to capture development in the model was an increase in the precision of the tuning of receptive fields as well as an increase in the precision of local excitatory interactions among neurons in the model. These small quantitative changes were sufficient to move the model through a set of quantitative and qualitative behavioral changes that span the age range from 8 months to 6 years and into adulthood. We conclude by considering how the DFT is positioned in the literature, the challenges on the horizon for our framework, and how a dynamic field approach can yield new insights into development from a computational cognitive neuroscience perspective.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Semi-supervised learning is one of the important topics in machine learning, concerning with pattern classification where only a small subset of data is labeled. In this paper, a new network-based (or graph-based) semi-supervised classification model is proposed. It employs a combined random-greedy walk of particles, with competition and cooperation mechanisms, to propagate class labels to the whole network. Due to the competition mechanism, the proposed model has a local label spreading fashion, i.e., each particle only visits a portion of nodes potentially belonging to it, while it is not allowed to visit those nodes definitely occupied by particles of other classes. In this way, a "divide-and-conquer" effect is naturally embedded in the model. As a result, the proposed model can achieve a good classification rate while exhibiting low computational complexity order in comparison to other network-based semi-supervised algorithms. Computer simulations carried out for synthetic and real-world data sets provide a numeric quantification of the performance of the method.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Discusses the technological changes that affects learning organizations as well as the human, technical, legal and sustainable aspects regarding learning objects repositories creation, maintenance and use. It presents concepts of information objects and learning objects, the functional requirements needed to their storage at Learning Management Systems. The role of Metadata is reviewed concerning learning objects creation and retrieval, followed by considerations about learning object repositories models, community participation/collaborative strategies and potential derived metrics/indicators. As a result of this desktop research, it can be said that not only technical competencies are critical to any learning objects repository implementation, but it urges that an engaged community of interest be establish as a key to support a learning object repository project. On that matter, researchers are applying Activity Theory (Vygostky, Luria y Leontiev) in order to seek joint perceptions and actions involving learning objects repository users, curators and managers, perceived as critical assets to a successful proposal.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we address the problem of defining the product mix in order to maximise a system's throughput. This problem is well known for being NP-Complete and therefore, most contributions to the topic focus on developing heuristics that are able to obtain good solutions for the problem in a short CPU time. In particular, constructive heuristics are available for the problem such as that by Fredendall and Lea, and by Aryanezhad and Komijan. We propose a new constructive heuristic based on the Theory of Constraints and the Knapsack Problem. The computational results indicate that the proposed heuristic yields better results than the existing heuristic.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work evaluates the efficiency of economic levels of theory for the prediction of (3)J(HH) spin-spin coupling constants, to be used when robust electronic structure methods are prohibitive. To that purpose, DFT methods like mPW1PW91. B3LYP and PBEPBE were used to obtain coupling constants for a test set whose coupling constants are well known. Satisfactory results were obtained in most of cases, with the mPW1PW91/6-31G(d,p)//B3LYP/6-31G(d,p) leading the set. In a second step. B3LYP was replaced by the semiempirical methods PM6 and RM1 in the geometry optimizations. Coupling constants calculated with these latter structures were at least as good as the ones obtained by pure DFT methods. This is a promising result, because some of the main objectives of computational chemistry - low computational cost and time, allied to high performance and precision - were attained together. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Parabens are antimicrobial preservatives widely used in pharmaceutical, cosmetic and food industries. The alkyl chain connected to the ester group defines some important physicochemical characteristics of these compounds, including the partition coefficient and redox properties. The voltammetric and computational analyses were carried out in order to evaluate the redox behavior of these compounds and other phenolic analogues. A strong correlation between chemical substituents inductive effects of parabens with redox potentials was observed. Using cyclic voltammetry and glassy carbon working electrode, only one irreversible anodic peak was observed around 0.8 V for methylparaben (MP), ethylparaben (EP), propylparaben (PP), butylparaben (BP), benzylparaben (BzP) and p-substituted phenolic analogues. The electrodonating inductive effect of alkyl groups was demonstrated by the anodic oxidation potential shift to lower values as the carbon number increases and, therefore the parabens (and other phenolic analogues) oxidation processes to the quinonoidic forms showed great dependence on the substituent pattern.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In order to understand the influence of alkyl side chains on the gas-phase reactivity of 1,4-naphthoquinone derivatives, some 2-hydroxy-1,4-naphthoquinone derivatives have been prepared and studied by electrospray ionization tandem mass spectrometry in combination with computational quantum chemistry calculations. Protonation and deprotonation sites were suggested on the basis of gas-phase basicity, proton affinity, gas-phase acidity (?Gacid), atomic charges and frontier orbital analyses. The nature of the intramolecular interaction as well as of the hydrogen bond in the systems was investigated by the atoms-in-molecules theory and the natural bond orbital analysis. The results were compared with data published for lapachol (2-hydroxy-3-(3-methyl-2-butenyl)-1,4-naphthoquinone). For the protonated molecules, water elimination was verified to occur at lower proportion when compared with side chain elimination, as evidenced in earlier studies on lapachol. The side chain at position C(3) was found to play important roles in the fragmentation mechanisms of these compounds. Copyright (c) 2012 John Wiley & Sons, Ltd.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This work is supported by Brazilian agencies Fapesp, CAPES and CNPq

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This thesis presents and uses the techniques of computational chemistry to explore two different processes induced in human skin by ultraviolet light. The first is the transformation of urocanic acid into a immunosuppressing agent, and the other is the enzymatic action of the 8-oxoguanine glycosylase enzyme. The photochemistry of urocanic acid is investigated by time-dependent density functional theory. Vertical absorption spectra of the molecule in different forms and environments is assigned and candidate states for the photochemistry at different wavelengths are identified. Molecular dynamics simulations of urocanic acid in gas phase and aqueous solution reveals considerable flexibility under experimental conditions, particularly for for the cis isomer where competition between intra- and inter-molecular interactions increases flexibility. A model to explain the observed gas phase photochemistry of urocanic acid is developed and it is shown that a reinterpretation in terms of a mixture between isomers significantly enhances the agreement between theory and experiment , and resolves several peculiarities in the spectrum. A model for the photochemistry in the aqueous phase of urocanic acid is then developed, in which two excited states governs the efficiency of photoisomerization. The point of entrance into a conical intersection seam is shown to explain the wavelength dependence of photoisomerization quantum yield. Finally some mechanistic aspects of the DNA repair enzyme 8-oxoguanine glycosylase is investigated with density functional theory. It is found that the critical amino acid of the active site can provide catalytic power in several different manners, and that a recent proposal involving a SN1 type of mechanism seems the most efficient one.